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Where do scenarios come from?
A stochastic programming (SP) problem is a math. programming
problem, with values of some parameters replaced by distributions.
Hence, to solve the problem, we need:

• A model describing the problem.
• Values of the deterministic (known) parameters.

• Description of the stochasticity.
− Known distributions, described by densities and/or CDFs.
− Historical data, i.e. a discrete sample.
− Only some properties of the distributions, for ex. moments.

Since SP can handle only discrete samples of limited size, we need to
approximate the distribution of the stochastic parameters. The
approximation is called a scenario tree.

Scenario Generation for Stochastic Programming 4



Where do scenarios come from?
A stochastic programming (SP) problem is a math. programming
problem, with values of some parameters replaced by distributions.
Hence, to solve the problem, we need:

• A model describing the problem.
• Values of the deterministic (known) parameters.
• Description of the stochasticity.

− Known distributions, described by densities and/or CDFs.
− Historical data, i.e. a discrete sample.
− Only some properties of the distributions, for ex. moments.

Since SP can handle only discrete samples of limited size, we need to
approximate the distribution of the stochastic parameters. The
approximation is called a scenario tree.

Scenario Generation for Stochastic Programming 4



Structure of an SP problem

..

Real-world problem

.

Modelling

.

Data analysis

.SP model

Note that for us, scenarios include only values of parameters (data),
i.e. they do not include values of any decision variables!
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Internal sampling methods
Actually, it is not true that we always need scenario trees.

• There are solution methods that sample the values as a part of the
solution process, i.e. they create the tree ‘on the go’.

• The information where to add samples is obtained from the model,
for example from the dual variables – in which case it works only for
linear programs.

Examples of these methods include:
stochastic decomposition – Higle and Sen (1996)
importance sampling within Benders decomp. – Dantzig and Infanger (1992)
stochastic quasi-gradient methods – Ermoliev and Gaivoronski (1992)

– this works for convex programs, not only LPs.

Note that even if the solution methods create the scenario trees
internally, we still have to decide at least the number of stages.
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Scenario tree – terminology
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Terminology:

stage is a moment in time, when decisions are taken, i.e. when we
get new information

– so the last time point is not a stage.

period is the interval between two time points.
scenario is a path from the root to one leaf.

Tree above: 4 stages, 4 periods, and 3×3×2 = 18 scenarios.
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Scenario tree – importance of branching

Why a tree, why not a “fan” like this?
...
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• Branching = arrival of new information.
• Fan above: no new information after the second stage.
• Hence, the fan represents a two-stage problem (with 3 periods)
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What to do before scenario generation

Prior to scenario generation, we have to:
• Decide the time discretization.

− number of stages
− lengths of time periods

• Know what information becomes available when,
relative to the timing of decisions.
This issue does not exist in the deterministic case.

• Decide the size of the tree, i.e. the number of children/branches for
each node.

Scenario Generation for Stochastic Programming 11



Sources of data for scenarios

• Historical data
− Is history a good description of the future?

• Simulation based on a mathematical/statistical model
− Parameters estimated from the real case

• Expert opinion
− Subjective
− Back-testing is not possible.

• Often a combination of more of the above
− Estimate the distribution from historical data,

then use a mathematical model and/or an expert opinion
to adjust the distribution to the current situation.

Scenario Generation for Stochastic Programming 12



A good scenario tree should capture

• Distributions of the random variables at each period
− marginal distributions of all variables

– in the very least their means and variances
− dependence between them, typically measured by correlations
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A good scenario tree should capture

• Inter-temporal dependencies
− changes of the distributions, based on prev. values
− includes things like auto-correlations, mean reversion, etc.
− can be modelled by time-series models
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Quality of Scenario Trees and How to Measure It

In accessing the quality, we have consider two things:
Stability

• If we generate several scenario trees, the solutions
should not vary too much.

• Stochastic programs tend to have flat objective functions,
so we can usually only require stability of the objective values,
not of the solutions themselves.

Error
• We use an approximation of the true distribution,

so we are likely to find a suboptimal solution.
• Not straightforward how to measure the error.
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Some Notation

The original (unsolvable) problem

min
x∈X

F
(
x; ξ̃

)
is replaced by a scenario-based problem

min
x∈X

F
(
x; η̃

)
.

In the stability tests, we generate several scenario trees η̃k, k = 1, . . . , n ,
leading to solutions

x∗k = argmin
x∈X

F
(
x; η̃k

)
.

Scenario Generation for Stochastic Programming 17



Error Caused by the Discretization

Pflug (2001) defines an approximation error caused by η̃k
(also called an optimality gap) as:

ef(ξ̃, η̃k) = F
(

argmin
x

F
(
x; η̃k

)
; ξ̃
)
− F

(
argmin

x
F
(
x; ξ̃

)
; ξ̃
)

= F
(

x∗k ; ξ̃
)
− min

x
F
(
x; ξ̃

)
≥ 0 .

To evaluate ef(ξ̃, η̃k), we would need to:

• Evaluate the “true” objective function F
(
x; ξ̃

)
.

− Can sometimes be done using a “simulator”.
• Solve the original problem, i.e. (arg) min

x
F
(
x; ξ̃

)
.

− Impossible – otherwise, we would not need scenarios.
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Tests Using a Simulator

Assume that we have a “simulator” for evaluating F
(
x; ξ̃

)
,

i.e. the true performance of a solution x.
This allows us to:

• Compare two solutions x∗1, x∗2.
• Compare two different scenario-generation methods.

• Test an out-of-sample stability of a given method:
1. Generate a set of trees η̃k, k = 1, . . . , n.
2. Solve problems using the trees → solutions x∗k .
3. Test whether F

(
x∗k ; ξ̃

)
≈ F

(
x∗l ; ξ̃

)
− The test is equivalent to ef(ξ̃, η̃k) ≈ ef(ξ̃, η̃l).
− Without stability, we have a problem!
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Notes on the Stability Test

• ef(ξ̃, η̃k) ≈ 0 implies ef(ξ̃, η̃k) ≈ ef(ξ̃, η̃l) and stability.
• Stability test assumes that we get a different tree

on each run of the scenario-generation method.
• Otherwise, we can run it with different tree sizes.

Another issues:
• Only the root variables can be moved from one tree

to another, as the scenarios do not coincide.
→ To evaluate F

(
x; ξ̃

)
, we have to fix the root part of x

and (re)solve the problem.
• The root solution x may be infeasible with scenarios ξ̃

− one can try to move constraints to the objective
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Out-of-Sample Tests Without a Simulator

Instead of using a simulator, we can “cross test”, i.e. test

F
(
x∗k ; η̃l

)
for l ̸= k

for all k = 1, . . . , n.

• It is still an out-of-sample test, as we test the solutions
on different trees than were used to find them.

• If we have to choose one of the solutions xk,
we would choose the most stable one.
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In-Sample Stability

Instead of the true performance, we look at the optimal
objective values reported by the problems themselves:

F
(
x∗k ; η̃k

)
≈ F

(
x∗l ; η̃l

)
,

or, equivalently,
min

x
F
(
x; η̃k

)
≈ min

x
F
(
x; η̃l

)
.

• No direct connection to out-of-sample stability.
− Can even have ef(ξ̃, η̃) = 0, without in-sample stability.

• Without this, we can not trust the reported performance
of the scenario-based solutions.
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What If We Do Not Have Stability?

What does it mean:
• No stability → decision depends on the choice of the tree.

What to do:
• Change/improve the scenario generation method.
• Increase the number of scenarios.
• Generate several trees, get the solutions and then

“somehow” choose the best solution.

Note: A proper mathematical treatment of stability can be found in
Dupačová and Römisch (1998); Fiedler and Römisch (2005); Heitsch
et al. (2006).
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Example: What Is the Best Method and/or Solution?

In-sample stability
of three different methods.

Shows the optimal objective val-
ues for different sizes of scenario
trees.  11000
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Example: What Is the Best Method and/or Solution?

Out-of-sample
of three different methods.

Shows a level of infeasibility of
the solutions for different sizes of
scenario trees.
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Stochastic upper bound for the optimality gap I

Let us assume that the scenario trees are sampled from the true
distribution, so they are unbiased and denote

z∗ = min
x∈X

F
(
x; ξ̃

)
= F

(
x∗; ξ̃

)
. . . true minimum

z∗k = min
x∈X

F
(
x; η̃k

)
= F

(
x∗k ; η̃k

)
. . . in-sample objective ,

so we have
ef(ξ̃, η̃k) = F

(
x∗k ; ξ̃

)
− z∗ .

Then, under some convexity assumptions,

E [z∗k ] ≤ z∗ ,
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Stochastic upper bound for the optimality gap II

i.e. the in-sample objective values are too optimistic.
If we, in addition, have F

(
x; ξ̃

)
= Eξ̃

[
f(x, ξ̃)

]
, then

E
[
F
(
x; η̃k

)]
= F

(
x; ξ̃

)
,

since sampling is unbiased. With our n scenario trees we get an estimate

1
n

n∑
i=1

F
(
x; η̃i

)
≈ F

(
x; ξ̃

)
.
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Stochastic upper bound for the optimality gap III

This allows us to estimate the optimality gap ef(ξ̃, η̃k) as

ef(ξ̃, η̃k) = F
(

x∗k ; ξ̃
)
− z∗

/ 1
n

n∑
i=1

F
(
x∗k ; η̃i

)
− z∗k .

Notes:
• This is a stochastic upper bound, it can even be negative.
• It is possible to compute a confidence interval for the upper bound,

based on t-distribution.
• See Mak et al. (1999) for details, including variance-reduction

techniques.
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Stochastic upper bound for the optimality gap IV

• In addition, Bayraksan and Morton (2006) provides methods for
estimating the optimality gap using only one or two scenario trees.
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One-Period Case - Standard Sampling I.

Univariate random variable
• This is a standard random number generation.
• Methods exist for all possible distributions.

Independent multivariate random vector
• Generate one margin at a time, combine all against all

− guaranteed independence
− grows exponentially with the dimension
− trees need often some “pruning” to be usable

• Generate one margin at a time, then join together,
first with first, second with second…
− independent only in the limit
− size independent on the dimension
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One-Period Case - Standard Sampling II.

General multivariate case
• Special methods for some distributions.

− Ex.: normal distribution via Cholesky decomposition
• Use principal components to get “independent” variables.

− Components are independent only for normal variables.
− Generally, they are only uncorrelated.

Bootstrapping / Sampling from historical data
• Does not need any distributional assumptions.
• Needs historical data.
• Are historical data a good description of the future?
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Handling Multiple Periods

Generate one single-period subtree at a time.
Start in the root, move to its children, and so on.
Inter-temporal independence

• Easy, as the distributions do not change.
Distribution depends on the history.

• Distribution of children of a node depends on the values
on the path from the root to that node.

• The dependence is modeled using stochastic processes
like ARMA, GARCH, …

• Effects we might want to consider/model:
− mean reversion
− variance increase after a big jump

Scenario Generation for Stochastic Programming 34



Stochastic processes – ARMA etc.

A new value Xt is generated as

Xt = f
(
Xt−1,Xt−2, . . . ; εt−1, εt−2, . . . ; εt

)
,

where εt is a random disturbance, usually εt ∼ N(0, σ2).

Standard examples:
AR(p) process: Xt = c +

∑p
i=1 piXt−i + εt

MA(q) process: Xt = εt +
∑q

i=1 θiεt−i

ARMA(p, q) process: Xt = εt +
∑p

i=1 piXt−i + εt +
∑q

i=1 θiεt−i
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Stochastic processes – GARCH etc.
Sometimes, we might need to handle heteroskedasticity, i.e. non-constant
variance. This is done using

εt = σtzt, zt ∼ N(0, 1) ,

where σt follows a ARCH (autoregressive conditional heteroskedasticity)
or GARCH (generalized autoregressive conditional heteroskedasticity)
process, where

• GARCH(p, q) is defined as

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−1 ,

i.e. σ2
t follows an ARMA process.

• ARCH(q) process is a GARCH(0, q) process.
• Many different generalizations exist.
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Stochastic processes – standard use
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Stochastic processes – creating a tree

Using several values of εt at each node:
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Sampling Methods – Summary

Pros • Easy to implement.
• Distribution converges to the true one.

Cons • Bad performance/stability for small trees.
− This can be improved by using corrections

or some special techniques, such as low-discrepancy
sequences (see for example Pennanen, 2007).

• Have to know the distribution to sample from.
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Property-Matching Methods – Basic Info

• These methods construct the scenario trees in such a way that a
given set of properties is matched.

• The properties are for ex. moments of the marginal distributions and
covariances/correlations.

• Typically, the properties do not specify the distributions fully; the
rest is left to the method.
− Different methods produce very different results.
− The issue is very significant for bigger trees,

with many more degrees of freedom.
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Example 1 – from Høyland and Wallace (2001)

• An optimization problem with values of the random variables and
scenario probabilities as variables.

• The measured properties are expressed as function of these variables.
• The objective is to minimize a distance (usually L2) of these

properties from their target values.
• Leads to highly non-linear, non-convex problems.

.. Example

• Works well for small trees, otherwise very slow.
• The optimization is often underspecified & no control what the

solver does about the extra degrees of freedom.

Scenario Generation for Stochastic Programming 42



Example 2 – from Høyland, Kaut, Wallace (2003)

• Developed as a fast approximation to the previous method,
in the case of four marginal moments + correlations.

• Build around two transformations:
1. Correcting correlations

» Multiply the random vector by a Cholesky component
» Changes also the marginal distributions (except normal)

2. Correcting the marginal distributions
» A cubic transformation of the margins, one margin at a time
» Changes the correlation matrix

• The two transformations are repeated alternately.
• Starting point can be, for ex., a correlated normal vector.

• Works well for large trees (creates smooth distributions).
• Needs pre-specified probabilities (usually equiprobable).

.. Details
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Property-Matching Methods – Summary

Pros • Do not have to know/assume a distribution family,
only to estimate values of
the required properties.

• Can combine historical data with today’s predictions.
• The marginal distributions can have very

different shapes, so the vector does not follow any
standard distribution.

Cons • No convergence to the true distribution.
• If we know the distribution, we can not utilize this

information, i.e. we throw it away.
• Can be hard to find which properties to use.
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“Optimal Discretization” by I.
Starts with the approximation error ef(ξ̃, η̃k):

ef(ξ̃, η̃k) = F
(

argmin
x

F
(
x; η̃k

)
; ξ̃
)
− F

(
argmin

x
F
(
x; ξ̃

)
; ξ̃
)

= F
(

x∗k ; ξ̃
)
− min

x
F
(
x; ξ̃

)
≥ 0 .

Pflug (2001) shows that, under certain Lipschitz conditions,

ef(ξ̃, η̃k) ≤ 2 sup
x

∣∣∣F(x; η̃k
)
− F

(
x; ξ̃

)∣∣∣ ≤ 2 L d(η̃k, ξ̃) ,

where L is a Lipschitz constant of f(), with F
(
x; ξ̃

)
= Eξ̃

[
f(x, ξ̃)

]
and

d(η̃k, ξ̃) is a Wasserstein (transportation) distance of distribution
functions of η̃k and ξ̃.
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“Optimal Discretization” II.

The method then creates a scenario tree that minimizes the
transportation distance d(η̃k, ξ̃).

• Whole multi-period tree is generated at once.
• The tree is “optimal” in a clearly specified sense.

• Difficult to both understand and use.

• References: Hochreiter and Pflug (2007); Pflug (2001).
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Scenario Reduction

• The idea is to reduce size of a given scenario tree ξ̃ into a smaller
tree η̃, with as little impact on the solution as possible.

• It is based on the theory of stability of stochastic programs w.r.t.
changes in the probability measures; see Römisch (2003)

• The theory shows that the change in solution can be approximated
using a Fortet-Mourier-type metric.
− metric on probability spaces, independent on the optimization problem

• This leads to a Monge�Kantorovich mass transportation problem
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‘Classical Scenario Reduction Algorithms I.’
Dupačová et al. (2003); Heitsch and Römisch (2003, 2007)

• The goal is to reduce a tree from N to k scenarios.
• It turns out the problem is NP-hard → need heuristics:

backward reduction
− find the scenario whose removal will cause the smallest error
− remove the scenario and redistribute its probability
− repeat until we have only k scenarios left

forward selection
− start with an empty tree
− find the scenario whose addition will cause the biggest improvement
− add the scenario and redistribute its probability
− repeat until we have k scenarios

• The results of one of their numerical examples were:
− 50% scenarios give 90% relative accuracy.
− 2% scenarios give 50% relative accuracy.
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‘Classical Scenario Reduction Algorithms II.’

Dupačová et al. (2003); Heitsch and Römisch (2003, 2007)
• The forward selection algorithm gives better results, but is very slow

for big N and k.
• Heitsch and Römisch (2007) presents improved versions of the

heuristics

Problem
• People use these techniques for multistage trees, which is not

appropriate, as pointed out in Heitsch and Römisch (2009)
• In addition, the algorithms are used to reduce a fan to a tree, which

is also not supported by the theory!
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Multistage Scenario Reduction
Heitsch and Römisch (2009)

• Based on stability results for multistage stochastic programs from
Heitsch et al. (2006)
− They find out that in the multi-stage case, one has to use a filtration

distance, in addition to the Fortet-Mourier-type metric.
− This filtration distance measures the difference between the

σ-algebras implied by the scenario trees.

• The reduction algorithm is similar to the backward reduction from
the two-stage case: at each step, find a pair of nodes with the same
parent that are ‘close’ and merge them.

• Note that also this method is not suitable to produce a tree out of a
fan—simply because the filtration of the fan is wrong to start with.
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Summary

• Scenario generation is an important part of the modelling/solving
process for stochastic programming models.

• A bad scenario-generation method can spoil the result
of the whole optimization.

• There is an increasing choice of methods, but one has to test which
one works best for a given problem.

• Open questions:
− Is there a universally good scenario-generation method?
− What is the optimal structure of a tree (deep vs. wide)?
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The End
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Example of the Optimization-Based Moment Matching
...0

.

.

1 .

.

2 .

.

3

∀i : (xi, yi); pi .

2 variables x, y + node probabilities p
Specifications:

• E [x], E [y]; E
[
x2], E [

y2]; Cov(x, y)
• Possibly other functions of x, y, p.

min
x,y,p

(∑
i

pixi − E [x]
)2

+
(∑

i
piyi − E [y]

)2

+
(∑

i
pix2

i − E
[
x2])2

+
(∑

i
piy2

i − E
[
y2])2

+
(∑

i
pi(xi − E [x])(yi − E [y])− Cov(x, y)

)2

s.t.:
∑

i
pi = 1 and pi ≥ 0, i = 1, . . . , 3 .

.. Go Back
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More Info on Transformation-Based Moment Matching
Correction of the correlations

• The target correlation matrix is R∗ = L∗LT
∗.

• The correlation matrix at step k is Rk = LkLT
k .

• Then Y = L∗L−1
k X has correlation matrix R∗.

The cubic transformation
• For each margin i: Yi = a + bXi + cX2

i + dX3
i

• To find the coefficients a, b, c, d, we have to:
− express the moments of Yi as a function of a, b, c, d and the moments

of X;
− find the values of a, b, c, d that minimize the L2 distance of the

moments from their target values.
• This is a non-linear, non-convex optimization problem

fortunately with only four variables.
.. Go Back

Scenario Generation for Stochastic Programming 62


	Introduction to Scenario Generation
	Scenario Trees: What? Why?
	Scenario trees – terminology etc.

	Generating scenario trees
	Some general comments

	Measuring Quality of Scenario Trees
	Quality and how to measure it
	Stability tests
	Estimation of upper-bound of the optimality gap

	Scenario-Generation Methods
	Conditional sampling
	Property-matching methods
	``Optimal Discretization''
	Scenario reduction techniques

	Appendix

