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Single-commodity network design with random edge capacities

Biju K. Thapalia∗ Teodor Gabriel Crainic† Michal Kaut‡

Stein W. Wallace§

January 2012

Abstract

This paper examines the single-commodity network design problem with stochastic
edge capacities. We characterize the structures of the optimal designs and compare with
the deterministic counterparts. We do this partly to understand what constitutes robust
network designs, but also to construct a heuristic for the stochastic problem, leading to
optimality gaps of about 10%. In our view, that is a rather good result for problems that
otherwise cannot be solved at all.

Keywords: Network flows, Single-commodity network design, Survivable networks, Edge
failure, Correlations, Robustness

1 Introduction

Many important physical networks, such as distribution networks for water, oil and gas
pipelines, road systems, or distribution channels are integral parts of our lives. These networks
are made to last for a long time and are often subjected to daily routine operational decisions.
If any parts of these networks are down, major portions of society will be affected. Focus on
cost savings tends to make these networks sparser, and hence more vulnerable to disruptions,
failures, maintenance-induced capacity reduction, congestion phenomena, etc. that may oc-
cur (see discussions in Ball et al. (1995) and Balakrishnan et al. (1998)). The owners of these
networks must therefore design and maintain them, often under strict budgetary regimes,
so that they work well even in the case of reduced capacity or broken links in the network.
Hence, in our view, there is an increased need to understand what constitutes a good network
design in light of random arc capacities modeling such uncertainties. In particular, we wish
to see if it is important to use models explicitly expressing the randomness in capacities when
designing the networks. And if the answer is yes, we would like to understand in what ways
the designs from deterministic models fall short of designs from models explicitly considering
the uncertainty. So, in our view, deterministic solutions are not just good or bad. Even if
they are bad in their own rights, they may carry useful information.

Even deterministic network design problems of industrial size are very hard to solve.
Stochastic problems of the same dimensions (in terms of the number of edges and nodes)
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simply cannot be solved today, not even with decent heuristics. It is reasonable to assume
that we shall always be able to solve larger deterministic than stochastic instances. Hence, we
want to investigate the following very simple heuristic (which does not generally provide good
solutions to stochastic integer programs): What if we decide which edges to open based on
the deterministic design problem (hence fixing all discrete variables) and then use a stochastic
continuous model to set capacities? Will that result in a good solution to the stochastic design
problem? If it does, our ability to find good solutions to stochastic design problems will grow
with our ability to solve the deterministic versions. That is certainly not the case today.

Good robust designs trade off deterministic initial costs versus expected future costs (or
gains) in a good way. Most often, by increasing initial costs, the network is provided with
more operational flexibility, and expected future costs decrease. (Note though, that at times,
uncertainty induces lower initial investments. This may, for example, take the form of decision
postponements.) What is more important to this paper, though, is that many networks, hav-
ing more or less the same initial investment costs, may react very differently to disturbances.
So even though it is clear that increasing the number of edges will increase the quality of a
network design, we would like to understand more specifically what characterizes a good way
to increase the number of edges. And, again, we would like to understand if deterministic
models will guide us well in designing the networks, or if they will lead us astray.

There are many application areas where network design with random edge capacities
are important. Possibly the most famous one is the design of survivable multi-commodity
networks in telecommunications. Much of this work originates with Suurballe and Tarjan
(1984). Water, oil, and gas distribution systems are other central cases. If we drop the pressure
constraints, these pipeline design problems simplify and can be expressed as single commodity
design problems with underlying continuous single commodity flow problems (Brimberg et al.,
2003).

A water pipeline network services different consumers, of which some are very sensitive
to disruption in supply, such as hospitals and certain industries. Disruption in the supply
may arise due to pipeline ruptures, leakages or blockage, which affect the overall flow in the
network. Many studies were performed on designing optimal and reliable water distribution
systems (Chung et al., 2009; di Pierro et al., 2009; Montalvo et al., 2008). A seminal paper
in gas distribution is by Rothfarb et al. (1970). The papers by De Wolf and Smeers (1996),
Martin et al. (2006), and Brimberg et al. (2003) address design issues for oil and gas distri-
bution networks. The work by Midthun et al. (2009) shows how the network structure and
the physical properties impacts the operation and development of natural gas transportation
networks.

In their work on fleet management (see, e.g., Cheung and Powell (1996)), Powell and his
co-authors use random edge capacities in a single commodity network to represent random
demand. Bounds on the recourse problem in this situation are discussed in Wallace (1987).

It is evident that a network with random edge capacities must function reasonably well in
many situations with partial or full breakdown of capacities. A common way to investigate this
situation is to perform single- or multi-parameter sensitivity analysis in order to understand
how the optimal solution changes as a function of these breakdowns. This approach might
seem appropriate, but in fact it is not. This is outlined in detail in Wallace (2000) and Higle
and Wallace (2003). Logically, when performing sensitivity analysis, one is assuming that
the design can be postponed until after breakdowns have become known. This is hardly ever
pointed out, though. So, whether sensitivity analysis is performed or not, one ends up with a
solution not created for robustness, and hence, may have to face difficult operational decisions
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when breakdowns occur.
Much of the literature in the field of survivable networks discusses various heuristics but

does not address the resulting network structure. We know that a deterministic solution
might perform very badly when used in a stochastic environment, that is, when subjected
to the uncertainties that were suppressed when the deterministic model was solved, see for
example Thapalia et al. (2012) for the case of random demand. The reason is simply that it is
not made to handle uncertainties in a good way. This paper studies the structural differences
between stochastic and deterministic designs, in order to understand what flexibility means
in the optimal network structure for a single commodity flow problem with single or multiple
sources and sinks. We also develop a simple heuristic for the stochastic case.

The remainder of the paper is organized as follows. Section 2 defines the problem and
introduces the mathematical formulation. Section 3 describes the experimentation set-up
and scenario generation. Section 4 presents the computational results with discussions and,
finally, Section 5 concludes the paper.

2 Problem description and modeling issues

Given a set of nodes (made up of source, demand, and transshipment nodes) and a set of
potential edges connecting these nodes, the single-commodity network design problem with
random edge capacities aims to determine a subset of the edges to open and their capacities,
so as to satisfy the demand, at demand nodes, at minimal cost, given the supply at the source
nodes and the potential failures of the edges to provide the full installed capacity.

The design is based on minimizing the sum of the fixed costs of selecting edges connecting
the nodes, the total costs to add capacity on the edges and flow the commodity on them, and
the penalty costs for not satisfying demand. The last three terms are continuously linear.
Not satisfying demand can have many interpretations, such as sending the flow at a later
point in time, with another mode, or a straightforward rejection. We find it crucial to include
the possibility of not satisfying all the demand, as it is unlikely to have a network which
satisfies all demand in all situations. The same formulation is used in both the stochastic and
deterministic models, to make the results comparable. We view supply as a capacity, and
hence, do not consider unused supply as a problem.

When we wish to compare a stochastic network design model with its deterministic coun-
terpart, we need to be careful about how we define the deterministic model. For random
demand, this is not so difficult. If historical data is available, for example, demand will usu-
ally be the average observed demand (or possibly some other forecast value based on the
history). Hence, it is not unreasonable to compare the stochastic model with a deterministic
model where all demands are replaced with their mean values.

It is not quite as easy for the case of random edge capacities. If the starting point is the
stochastic model, and we ask “What is the natural deterministic counterpart?”, the answer
is most likely a model where edge capacities are replaced by their means. But if the starting
point is that of setting up a deterministic network design model (possibly realizing that edges
might fail, but not wanting to model it), it is rather likely that edges will be treated with
capacities equal to fully-operational values, that is, their maximal capacities from a stochastic
perspective. One will argue: this edge costs a$ and has a capacity of b. One will not use
expected capacity taking possible failures into account. Consequently, in what follows, for
each stochastic case, we shall consider two deterministic cases: average capacity and maximal
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(design) capacity.
The expected behavior of a deterministic solution can be made arbitrarily bad by setting

the penalties for unsatisfied demand sufficiently high. However, showing that the determin-
istic solution is bad is not our goal, rather we wish to understand how the stochastic and
deterministic solutions relate to each other. Hence, we have set the penalties at moderate
levels, thereby facilitating the comparisons.

To define the mathematical formulation, let G = (N , E) be a network defined by a set N
of n nodes, made up of sets C of source nodes, D of demand nodes, and T of transshipment
nodes, and a set E of m edges (undirected arcs), where

E ⊂ {k = (i, j) : i ∈ N , j ∈ N and i < j} .

Each edge is indexed either by i, j or by k.
The randomness in the capacity of the edges is described by a set of scenarios S, where

each individual scenario s ∈ S has one capacity realization for each edge. We shall discuss in
Section 3.2 the scenario generation procedure. Define the following parameter notation:

Mk upper bound on capacity installable on edge k ∈ E ;
R unit cost of unsatisfied demand;
P s probability of scenario s ∈ S;
Ck unit flow cost on edge k ∈ E ;
Gk fixed setup cost for edge k ∈ E ;
Hk unit capacity installation cost for edge k ∈ E ;
Vk initial capacity on edge k ∈ E , if any;
Di for i ∈ D, demand at demand node i; Di < 0;

for i ∈ C, supply at source node i; Di > 0;
∆s

k part of capacity on edge k ∈ E that works in scen. s ∈ S, 0 ≤ ∆s
k ≤ 1.

Define the decision variables

xsk = xsij flow on edge k = (i, j) ∈ E , going in direction i→ j, in scen. s ∈ S;

zsk = zsij flow on edge k = (i, j) ∈ E , going in direction j → i, in scen. s ∈ S;

uk new capacity installed on edge k ∈ E ;
esi for i ∈ D, unsatisfied demand at node i in scenario s ∈ S;

for i ∈ C, unused capacity of source i in scenario s ∈ S;
yk 1 if edge k ∈ E is selected, 0 otherwise.

We assume that total supply, coming from equally-sized source nodes equals the maximal
demand in the network, so that

Di = −
∑
j∈D

Dj / |C| (1)

for all i ∈ C, where |C| is the number of source nodes. By letting supply come from a set
of equally-sized nodes, we avoid, as much as possible, that variation in supply affects the
interpretation of results, which, after all, should concern edge capacities. The model hence
is:

min
∑
k

Gkyk +
∑
k

Hkuk +
∑
s

P s

{∑
k

Ck (xsk + zsk) +R
∑
i∈D

esi

}
(2)
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Subject to:

∑
j: (ij)∈E

(
xsij − zsij

)
−
∑

j: (ji)∈E

(
xsji − zsji

)
=


0 ∀i ∈ T , ∀s ∈ S
Di − esi ∀i ∈ C, ∀s ∈ S
Di + esi ∀i ∈ D, ∀s ∈ S

(3)

xsk + zsk ≤ ∆s
k (uk + Vk) ∀k ∈ E , ∀s ∈ S (4)

uk ≤Mk yk ∀k ∈ E (5)

0 ≤ esi ≤ |Di| ∀i ∈ C ∪ D, ∀s ∈ S (6)

xsk, z
s
k, uk ≥ 0 and yk∈{0, 1} ∀i ∈ C ∪ D, ∀k ∈ E , ∀s ∈ S (7)

The objective function (2) minimizes the total cost of the network. The first part is the
fixed setup cost for all new edges, the second part the costs of adding the new capacities,
the third part is the expected total cost of the flows through the edges, and the penalty for
unsatisfied demand. Constraints (3) model conservation of flow at nodes for all scenarios. The
left-hand side is the net outflow from node i, which must be zero for transshipment nodes T ,
equal to the used capacity for source nodes C, and equal to the satisfied demand for demand
nodes D (Di is negative in this case).

Constraints (4) represent the flow limit in each edge. The left hand side of the equation
is the net flow on edge k, which should be less than or equal to the total capacity of the edge.
Since we do not start with any initial existing capacity, we always have Vk = 0. Note that,
in an optimal solution, an edge will never have flow in both directions. Constraints (5) show
that new capacity uk can be added up to Mk, but only if edge k is built. Constraints (6)
bound the unused supplies and rejected demands and, finally, (7) ensure that all variables are
non-negative and the edge selection decisions binary.

For the deterministic counterpart (as mentioned in Section 2) we replace the stochastic
edge capacities by their expectations and their maximal values, yielding two deterministic
cases.

3 Experimentation and scenario generation

We first discuss the test instances and their sources before turning to scenario generation
and the question of stability relative to the chosen scenarios. Our experiments are designed
to achieve two goals: Firstly, we wish to understand how deterministic designs perform in
stochastic environments and to what extent information from deterministic designs are useful
for the stochastic problem, partly to see if they can be used to generate heuristics for the
stochastic case. Secondly, we aim to characterize the stochastic designs, so that we can
qualitatively describe good designs and use this knowledge to evaluate a given design without
making any serious calculations.

3.1 Test instance generation

We took five networks also used in Thapalia et al. (2011, 2012). The instances named Ger-
many, Nobel-EU, France, and Pdh are telecommunication networks from the SNDlib library
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Table 1: The test instances.

Problem name # nodes # edges # dem. n. # src. n. # tests

Germany SS 29 48 10 1 4
Germany MS 29 48 10 3 4
France SS 16 30 10 1 4
France MS 16 30 10 3 3
Montreal r06.1 SS 10 38 5 1 4
Montreal r06.1 MS 10 38 7 3 3
Pdh SS 11 30 7 1 4
Pdh MS 11 30 7 4 4
Nobel-EU SS 28 38 8 1 4
Nobel-EU MS 28 38 8 4 4

(Orlowski et al., 2010), while Montreal r06 is obtained from CIRRELT (Interuniversity Re-
search Centre on Enterprise Networks, Logistics and Transport), Montreal. The names of the
test networks do not mean anything in our computational setup.

In total, 76 test instances were constructed using these five networks, 40 single-source and
36 are multi-source. The instances were created in the following way: for each of the five
networks, we created single-source and multi-source test cases by selecting one or multiple
source nodes. This yielded 38 instances of which 20 are single-source and 18 are multi-source.
Since we know that correlations may play important roles in the design of a network, we
created positively correlated and uncorrelated cases for each instance. In the case of positive
correlations, adjacent edges were given correlations of 0.5, while edges separated by one edge
were given correlations of 0.2. Edges which are separated by two edges have a correlation of
0.1. This is an intuitive setting for representing natural calamities. Whenever one edge is hit
hard, there is a chance that nearby edges are hit as well, see, e.g., Chen et al. (2002).

It is worth noting that, originally, these instances were multi-commodity network design
problems. Therefore, to adapt them to the single-commodity context, we only kept the node
coordinates (where available) and the fixed setup edge costs. The values for unit flow and
capacity costs were fixed proportional to the Euclidean distance between the edge node. The
cost of unfulfilled demand was derived for each instance using a multiple of the highest value
among all edge costs in the network. We made sure, however, that the penalty costs are not
driving the solutions. The results in the first part of Section 4.1 are based on instances with
these cost structures. The Montreal instance does not have node coordinates. We therefore
used Graphviz (Gansner and North, 2000) to draw the graph using the fixed setup costs as
distance measure. The graphs of the instances coming from Nobel-EU are planar, whereas
the other graphs are non-planar. The test instances are described in Table 1.

We selected four potential source nodes for instances with single-source networks. When
one of them is a source, the others are transshipment nodes. We selected four (three for
Montreal r06 and France) sets of source nodes for the multi-source networks to create four
instances from each network. The number of source nodes for each case is listed in the fifth
column of Table 1. In the pictures that follow, the distance between two nodes reflects not
only the actual distance, but also the levels of the unit capacity and flow costs. If an edge is
twice as long as another, it is also twice as costly with respect to these two costs.

Given the difficulty of solving the stochastic network design problem to optimality, we
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kept n (the number of nodes) below 30 and m (the number of edges) below 50. Using AMPL
and solving to optimality using CPLEX 9.0, the solution time varies from a few seconds to 5
hours depending on the instance, on a PC with 3 GHz Intel® CPU and 8 GB of RAM. Hence,
these instances are the largest we can handle if we want optimal solutions to the stochastic
formulations.

3.2 Scenario generation and stability tests

Stochastic programs need discrete probability distributions. A scenario is a vector of length
m containing a possible capacity for each edge. We have created scenarios with equal prob-
abilities of occurring, using a variant of the moment-matching method from Høyland et al.
(2003).

Lacking specific knowledge, we have chosen a triangular distribution on the [0, 1] interval,
with mode at one, which gives an expected value of 0.67. Note that a mode below one would
imply that the edge (in the continuous case) has an extremely low probability of being close to
fully operational. We feel the chosen distribution is a reasonable description of edge failures.

The decision on the number of scenarios used to represent the stochastics is critical as
we want to be sure we study the effects of randomness on our model, and not some random
side-effect of the scenario generating procedure. For a given scenario generation procedure,
there is normally a trade-off between the number of scenarios and the time needed to solve the
stochastic program to optimality. The task is thus to find the smallest number of scenarios
that still gives solutions that are both in- and out-of-sample stable, in the sense described in
Kaut and Wallace (2007).

We ran our in-sample stability test with different numbers of scenarios and ended up
with 200, considering the solution time and stability. The deviation (measured by standard
deviation of the objective values of all runs divided by the mean of the objective values) in
all cases is less than 1% except for the case of Montreal r06, where it is 1.5% for single-source
cases and 2% for multi-source cases. Out-of-sample stability tests, using a reference tree with
2000 scenarios, are all within 1%. With these values, we are satisfied that we have stability.

3.3 Comparison tests

As outlined in the Introduction, the deterministic solution, by construction, has a worse
expected behavior than its stochastic counterpart. However, we would like to understand
more about why this is the case, and in what sense it is worse. This is partly motivated by
what we found in Thapalia et al. (2011, 2012), where we discussed random demand: the edges
(if not their capacities) from the deterministic solution provided a good starting point for the
stochastic case. This is unusual for stochastic integer programs.

In order to check the quality of the deterministic designs, as well as compare them to the
stochastic ones, we have set up two tests, named comparisons. Whenever a comparison is
performed, we take the deterministic and stochastic designs (or parts thereof) and evaluate
them using reference trees – in our case trees with 2000 scenarios, to make sure we have good
approximations of the true distributions. The costs from the design and evaluation phases
are added up, making the reported costs comparable across all tests.

A The classical test where the whole first-stage solution is evaluated out-of-sample. This
amounts to solving a 2000-scenario stochastic program with all first-stage variables
(designs and capacities) fixed, so in fact this equals the solution of 2000 independent
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second-stage problems. Since the second stage does not involve any integer variables,
this is very fast.

B Only information on which edges should be opened is imported from the first stage.
Then, in a 2000-scenario stochastic program, all discrete variables y describing opened
and closed edges—we call the resulting network a skeleton—are fixed and the stochastic
program is run. Hence, the model is allowed to install any capacity on the opened edges
(also lower than in the deterministic case), but not to open new ones.

Applied on the deterministic solution, Comparison A tests the quality of the deterministic
solution. The purpose of Comparison B is to check if the deterministic solution possibly has
a good structure, but badly chosen capacities (typically too low). If this is the case, to find
a reasonably good solution to the stochastic design problem, we first find the skeleton, using
a deterministic model, and then set capacities using a stochastic continuous model. This
way, we can find good solutions to the stochastic design problem whenever we can solve the
deterministic one. This is not true with today’s technology.

In what follows, we discuss the major findings, details are given in the Appendix. Our first
need is to understand the relationship between the stochastic and deterministic solutions.

For each of the 38 instances, we solve two deterministic problems, one with full capacity
available and the other with the mean (in our case 67% of full) capacity on each edge. These
choices were motivated in Section 2. In addition, we solve two stochastic versions of each
instance, one with uncorrelated and one with positively correlated edge failures. For each
stochastic version, we take the solution of the stochastic model and the two deterministic
solutions and evaluate them out-of-sample on a reference tree, i.e., a tree with 2000 scenarios
and the same correlations as those used to solve the stochastic programs.

Our measure of the quality of a solution (or a partial solution like a skeleton) is the ratio
between the expected costs using the deterministic solution and the expected costs using the
stochastic solution. As the expected costs are never close to zero in our problems, there is
no danger of running into issues amounting to a division by zero. Note that, since both the
stochastic and deterministic solutions are evaluated out-of-sample, the ratio might become
slightly smaller than 1.

We also want to explore the relationships between the capacity building cost and the
performance of the deterministic skeleton in the stochastic environment. The hypothesis
is that as the capacity costs increase, the stochastic skeleton will look increasingly like the
deterministic one (which is a tree) due to the cost of opening more capacity than what is
absolutely necessary. Similarly, as the capacity costs costs increase, the deterministic skeleton
tends toward the stochastic one, in terms of the number of open edges, as it is (relatively
speaking) governed more and more by installed capacity and less and less by the number of
opened edges. In other words, we postulate that as costs of installing capacity decrease, the
expected behavior of the deterministic skeleton in a stochastic setting becomes increasingly
bad, and this is true for both multi- and single-source cases.

To achieve this, we started with the instances identified above, which we define as base
cases. From each base case, we built five additional instance by using 33%, 66%, 133%, 166%,
and 200% of the unit capacity installation cost of the base case.

Certainly, the mean-capacity deterministic problem is equivalent to the full-capacity deter-
ministic problem with 1/0.67 = 1.5 times higher capacity costs. Consequently, this parametric
analysis of the capacity costs contains the analysis of the relationship between the two de-
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Figure 1: Results of the Comparison A. Quality of the solutions to the deterministic prob-
lems with full (left) and mean (right) edge capacities, measured as a ratio of
their out-of-sample costs relative to the costs of the corresponding stochastic
solutions.

terministic cases. However, to keep the interpretations apart, we have chosen this approach
instead of reading one set of deterministic results from within the results of the other.

4 Computational results

We present and discuss the computational results of the experiments indicated above. The
full results can be found in A, where Tables 3 and 4 include results presented in Figures 1
and 2, while Table 5 corresponds to Figure 3.

4.1 Inheritance from the deterministic solutions

Figure 1 presents results of Comparison A for the two deterministic solutions, split between
single- and multi-source cases. The figure shows that both deterministic designs are bad,
but differences may be observed, When mean capacities are used, results are better (around
2.5 times higher costs on average for both the single- and multi-source cases) than when
the full capacities are used (around 4 to 4.25 times higher costs on average). The reason is
simply that when mean capacities are used, the edges seem to have less capacity, and hence
more is installed. Moreover, as we have observed in earlier papers – and that is confirmed
here –, deterministic designs do not only suffer in terms of structure (skeletons) but also in
terms of too low capacities. Therefore, doing what many practitioners do, namely running
deterministic models with a pessimistic view on edge capacities, is indeed a good idea.

Figure 2 shows that when we use the deterministic skeleton and apply a stochastic program
to set capacities, the results are rather good, implying that the skeletons perform quite well.
We can also see that the multi-source cases do better than the single-source ones. This
observation holds for most of the tested levels of capacity costs, as shown in Figure 3. As
the capacity installation costs increase, the loss of using a deterministic skeleton decreases,
and more so for the multi-source cases. This is true for both maximal and mean value
edge capacities. This observation confirms that the quality of a design is a function of both
connectivity and capacity. When the installation cost is low, the deterministic designs are
guided by the shortest routes in terms of fixed costs of opening the edges, and the resulting
skeletons perform relatively badly in a stochastic environment. But when the capacity costs
increase, the deterministic designs change. They are no longer primarily guided by the shortest
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Figure 2: Results of the Comparison B. Quality of the solutions to the deterministic prob-
lems with full (left) and mean (right) edge capacities, measured as a ratio of
their out-of-sample costs relative to the costs of the corresponding stochastic
solutions.
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Figure 3: Graph of Comparison B test values for different variable setup cost. The X-axis
shows the percentage of variable setup cost as compared to the base case and the
Y -axis the quality of the solutions to the deterministic problems with full (left)
and mean (right) edge capacities, measured as a ratio of their out-of-sample costs
relative to the costs of the corresponding stochastic solutions.

routes in terms of fixed edge selection costs (mostly implying as few edges as possible),
but also edge capacity-installation costs. This results in more edges being opened as total
installed capacity, rather than the number of edges with capacity is the primary driver of costs.
These skeletons, when used in a stochastic environment, perform better as they contain more
connections. In the multi-source case, this happens more quickly because there are more
edges than in the single-source case. Since the demand does not vary within each small tree
in the forest, contrary to the case with random demand, the fact that the trees effectively cut
the design into smaller parts is not a problem. Therefore, what is needed here is high density
(many paths) and enough installed capacity within each tree to make sure the demand within
the tree is satisfied with a high probability so as to achieve low penalty costs.

What we see from this analysis is that, if the observations carry over to larger cases,
something that, as usual, cannot be tested, we now have a heuristic for the stochastic case:
First solve the deterministic problem to optimality, then use a stochastic continuous program
to set capacities. That will result in an optimality gap of about 10% in the better cases.
Although 10% is far from ideal, it is better than any other method that we are aware of, for
problems of this size and similar computation efforts. Such a heuristic would work as long as
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Table 2: Average number of edges and average edge capacity for all tests in each single-
source (SS) and multi-source (MS) case, for various correlation values (ρ).

Number of edges Capacity per edge

det. ρ≥0 ρ=0 det. ρ≥0 ρ=0

France SS 11.75 16.25 18 624 1096 843
Germany SS 16.75 28.75 32.75 7 5 4

Montreal r06 SS 5.5 9.5 10 104 162 111
Nobel-EU SS 13.62 25.25 29 28 24 18

Pdh SS 7.37 9.5 10.5 131 186 154

France MS 13 17 17.67 475 745 646
Germany MS 19 32.25 36 5 4 3

Montreal r06 MS 7 9 9.33 53 188 130
Nobel-EU MS 15.75 23 25.5 13 19 15

Pdh MS 7.89 8.75 9 87 170 159

we can solve the deterministic problem to optimality and take only marginally more time for
the continuous stochastic program.

The heuristic could be applied to even bigger problems if we address the deterministic
problem by some heuristic, but we know little about the quality of the result in that case. On
the other hand, there is no feasible alternative. Note that this approach, though in principle
available for any stochastic mixed integer program, normally does not deliver at all.

4.2 Structural characteristics

This section examines the structures of the deterministic and stochastic network designs from
the tests mentioned in Section 3.1, and focuses on a few important observations shedding
light on the characteristics of the stochastic designs under random edge capacities. It will
be observed that these characteristics, once presented, are rather obvious. We see that as
necessary for the characterization to be useful. A property that does not appear obvious or
natural ex-post, is hardly useful since that would imply it did not teach us anything. So,
it is our view that although our observations are obvious in this sense, they still provide
understanding, which is one of the goals of this paper.

Network density

The second, third, and fourth columns of Table 2 show that stochastic designs have more
edges than their deterministic counterparts. Similarly, columns five, six, and seven show that
installed edge capacity is higher in the stochastic designs except for the cases of Germany
(both for multi- and single-source case) and Nobel-EU SS. The total installed capacity in the
stochastic designs is higher in all cases, however. The reasons for this are that, firstly, with
more edges in the network, there are alternative ways to reach demand nodes in the event
of reduced edge capacities, and, secondly, higher installed capacities ensure that there are
reasonably high capacity paths reaching the demand nodes even when there are edge failures.

We can also see from Table 2 (third and fourth columns) that, designs for the uncorrelated
cases generally have more edges than the corresponding positively correlated cases. This can
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Figure 4: Network Density. Uncorrelated (left) and positively correlated (right) stochastic
structure of Nobel-EU showing higher number of edges for the uncorrelated case
and generally higher installed capacities on edges for the positively correlated
case.

be explained by the fact that, in the uncorrelated case, it is very useful to have alternate
paths by setting up extra edges. Then, when one path leading to a demand node has reduced
capacity, another might work well — capacities are uncorrelated. In the positive correlation
case, all edges incident to a node are positively correlated, so even though there may be
many paths, they will tend to have difficulties at the same time. This reduces the value of
alternative paths. The positive correlation cases compensate by installing more capacity on
the selected edges (sixth and seventh columns of Table 2). The latter is of course a function of
how we defined edge failures – as a percentage of installed capacity. These effects can be seen
in Figure 4, where the uncorrelated case has more edges than the positively correlated one
and the positively correlated case generally has higher installed edge capacity. In the figure,
solid (blue) edges are installed with the given capacities, dotted edges are not installed. The
dark (red) nodes are the source nodes, the white ones transshipment nodes. The shaded
(yellow) nodes are demand nodes. The same color scheme is followed throughout the paper.

Alternative paths

We observe the creation of alternative paths in the stochastic network structures, even for the
case of positively correlated edge failures. This is due to the fact that, with alternative paths,
the network increases the chance that demand is at least partly satisfied even when one of
the paths fails or works at low capacity. Figure 5 illustrates this observation. Demand node
16 in the stochastic structure is served by three paths, one approaching via transshipment
node 19, one via transshipment node 6, and finally one via a collection of other demand nodes
(through node 17). These paths may help fulfill demand at node 16 when one of them is down
or has low capacity. Even though this is less useful when failures are positively correlated,
the alternative paths still provide some extra chance of reaching demand node 16.

We observed, when studying optimal designs under random demand (see Thapalia et al.,
2011, 2012), that consolidation was the major tool for hedging against uncertainty. By having
several demand nodes share paths, one node could use the path when the others do not need
it. With random edge capacities, this need does not emerge since demand is known. Hedging
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comes instead from having alternative paths, and of course, generally higher installed capacity
since edges may fail. Consolidation-like phenomena are hence observed in some cases, but
they come from the same phenomena as in deterministic cases: paths to demand nodes share
edges (even if the paths become slightly longer) so that fewer fixed selection costs need to be
paid, and, of course, two shortest paths (including edge selection and capacity installation
costs) may simply happen to share edges.

Cycles

The formation of cycles is quite visible in networks designed for stochastic edge capacities.
Cycles are formed among the demand nodes, including or excluding the source nodes, or
by joining the leaves of the trees. When we compare this with the networks for stochastic
demand, it is far more prominent here. The main reason for cycle formation is the need to
provide alternate paths to fulfill demand when some edges are (partly) down. Cycles have the
advantage that they can be used both ways. So somewhat high capacities (which characterizes
the stochastic designs) combined with cycles provide alternative paths to demand nodes. We
can see this in Figure 5 where cycles are seen in the stochastic network design, but not in the
deterministic structures.

Removing edges

It is observed from the test results that in almost all cases, the stochastic skeleton contains
the deterministic one. The additional edges are providing flexibility to the network struc-
ture. However, as we increase the fixed edge selection cost or the capacity installation costs
compared to the base case, the additional edges, which were seen in the stochastic skeletons,
disappear and finally very few are left. We can observe this in Figure 6. As we increase
the fixed costs, keeping all other costs the same (left drawings), more of the edges that were
specific to the stochastic solution disappear, making the stochastic design closer to the deter-
ministic one (top structure of Figure 5). The first edges and partial paths to disappear are
those with small capacities, such as 16–17, 18–10–21, or 3–27–19–16. The same effect is seen
when increasing the capacity installation costs (right-column drawings).

5 Conclusions

We have seen that optimal stochastic designs for both the single- and multi-source cases differ
from the deterministic ones. The flexibility, which gives the stochastic designs better expected
performance, comes from a higher number of edges and higher installed capacities. With a
higher number of edges there exist more paths to demand nodes and hence it also becomes
easier to find alternative routes to the demand nodes in the case of edge failures. So while
the sharing of paths is the main vehicle for hedging in the case of random demand, here it
comes from providing alternative paths from sources to demand nodes.

The deterministic solutions as such are not good in the stochastic setting as their expected
performance is bad. But borrowing the skeleton from the deterministic solution is rather good.
With increased costs for adding edges or for adding capacities in the edges, the stochastic
skeletons start to look more and more like the deterministic ones. Thus, for cases of this
type, using a deterministic method to set the skeleton, and solving a stochastic continuous
program to set capacities, is a promising heuristic resulting in optimality gaps of about 10%.
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Figure 6: Disappearing Edges. Stochastic structures of Germany SS with increasing fixed
edge selection costs (left) and with increasing capacity installation costs (right)
showing that, as the costs increase, the stochastic designs look increasingly like
the deterministic ones. (Note that all figures are divided by 10.)

Naturally, we cannot test this for larger cases, since we cannot solve the stochastic versions
to optimality.

Using the deterministic skeleton is slightly better if based on average edge capacities rather
than maximal ones. The reason is somewhat subtle: Using average rather than maximal edge
capacities is equivalent to increasing capacity installation costs. That reduces the importance
of the fixed edge selection costs, generally leading to more edges being opened, and hence a
better starting point for the stochastic linear program.

Correlations have important effects on the structure of the design. With uncorrelated
edge failures, the stochastic designs have more edges than when edge failures are positively
correlated. With positively correlated edge failures, the networks have higher installed capac-
ities. The reason is simply that with positively correlated failures, all paths to a node tend
to have difficulties at the same time, providing less hedging from multiple paths.

Cycles are present in the stochastic networks due to a combination of two phenomena.
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The first is the one we observe for consolidation in the deterministic problem: avoid paying
too many fixed costs. The second is the characteristics of a ring network. It provides two
connections between any pair of nodes in the ring, and the ring can be used in both directions.
For these reasons, cycles are much more prominent here than with random demand.

So, network designs for stochastic edge capacities are fundamentally different from network
designs for stochastic demand. With stochastic edge capacities there are more edges, more
cycles, and more installed capacities as compared to the design for stochastic demand. A
major reason is that there is less consolidation. For stochastic edge capacities we only see
consolidation of the type we see in deterministic designs, mostly caused by savings in the
fixed edge selection costs. Instead, alternative connections become more important as a
hedge against edges having reduced capacities. Skeletons generally do better here than with
random demand as trees in the forests – typical for deterministic designs – no longer have the
need to contact each other when randomness strikes, as each tree has enough supply.
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A Results of the numerical tests

This appendix provides detailed results from the tests in Section 3.1.

Table 3: The ratios for the single source cases corresponding to Figures 1 and 2, split by
correlation structure.

Full capacity Mean value capacity

comp. A comp. B comp. A comp. B

Test Name ρ=0 ρ≥0 ρ=0 ρ≥0 ρ=0 ρ≥0 ρ=0 ρ≥0

Germany SS 04 1.76 1.62 1.20 1.11 1.39 1.26 1.18 1.09
Germany SS 10 1.71 1.57 1.17 1.08 1.34 1.22 1.17 1.08
Germany SS 13 2.12 1.92 1.20 1.10 1.57 1.39 1.20 1.10
Germany SS 27 1.99 1.81 1.21 1.10 1.55 1.37 1.21 1.10

France SS 06 6.31 5.46 1.27 1.13 3.15 3.23 1.27 1.13
France SS 10 4.82 4.41 1.56 1.43 2.74 2.66 1.39 1.28
France SS 13 5.04 4.42 1.31 1.18 3.44 2.74 1.31 1.18
France SS 16 5.91 5.30 1.22 1.11 3.98 2.91 1.22 1.11

Montreal r06 SS 01 12.29 11.45 1.24 1.17 6.17 5.71 1.24 1.17
Montreal r06 SS 03 11.16 9.35 1.30 1.10 5.92 4.89 1.30 1.10
Montreal r06 SS 04 12.62 11.17 1.33 1.15 6.61 5.69 1.33 1.15
Montreal r06 SS 08 13.04 10.84 1.32 1.14 6.85 5.65 1.32 1.14

Pdh 01 SS 1.97 1.81 1.10 1.03 1.49 1.33 1.10 1.03
Pdh 02 SS 2.48 2.36 1.07 1.03 1.67 1.56 1.07 1.03
Pdh 04 SS 2.36 2.25 1.04 1.01 1.62 1.51 1.04 1.01
Pdh 08 SS 2.15 2.00 1.13 1.07 1.53 1.40 1.13 1.07

Nobel EU SS 04 3.88 3.56 1.42 1.32 2.81 2.54 1.39 1.29
Nobel EU SS 05 4.86 4.24 1.34 1.19 3.28 2.79 1.34 1.19
Nobel EU SS 15 4.02 3.53 1.33 1.18 2.87 2.45 1.37 1.21
Nobel EU SS 18 4.83 4.27 1.31 1.18 3.14 2.74 1.31 1.18
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Table 4: The ratios for the multi-source cases corresponding to Figures 1 and 2, split by
correlation structure.

Full capacity Mean value capacity

comp. A comp. B comp. A comp. B

Test Name ρ=0 ρ≥0 ρ=0 ρ≥0 ρ=0 ρ≥0 ρ=0 ρ≥0

Germany 1 MS 2.05 1.89 1.14 1.07 1.54 1.40 1.14 1.07
Germany 2 MS 2.23 2.00 1.22 1.12 1.63 1.43 1.22 1.12
Germany 3 MS 2.10 1.95 1.17 1.09 1.52 1.38 1.17 1.09
Germany 4 MS 2.15 1.96 1.12 1.04 1.57 1.41 1.12 1.04

France MS 1 6.57 5.98 1.17 1.08 3.56 3.20 1.17 1.08
France MS 2 5.83 5.35 1.38 1.26 3.59 3.30 1.38 1.26
France MS 3 6.33 5.72 1.47 1.35 3.48 3.10 1.22 1.13

Montreal r06 MS 1 15.33 14.78 1.09 1.04 6.90 6.76 1.09 1.04
Montreal r06 MS 2 14.29 13.23 1.20 1.10 6.88 6.36 1.20 1.10
Montreal r06 MS 3 15.31 14.04 1.14 1.02 7.32 6.69 1.14 1.02

Pdh 1 MS 2.50 2.42 1.02 1.00 1.60 1.52 1.02 1.00
Pdh 2 MS 2.43 2.30 1.03 1.00 1.58 1.48 1.03 1.00
Pdh 3 MS 2.65 2.58 1.02 1.00 1.65 1.59 1.02 1.00
Pdh 4 MS 2.65 2.49 1.08 1.03 1.74 1.60 1.08 1.03

Nobel EU MS plus 01 4.50 4.21 1.28 1.18 2.88 2.70 1.17 1.10
Nobel EU MS plus 02 4.61 4.32 1.20 1.13 2.72 2.54 1.20 1.13
Nobel EU MS plus 03 5.05 4.67 1.26 1.17 2.94 2.70 1.26 1.17
Nobel EU MS plus 04 4.89 4.52 1.23 1.13 3.08 2.77 1.23 1.13

Table 5: The ratios for Comparison B corresponding to Figure 3, for full capacities and
mean capacities at different capacity installation costs.

Single source Multi-source

Var. setup cost Full Cap. Mean Cap. Full Cap. Mean Cap.

0.33 1.18 1.18 1.2 1.17
0.66 1.19 1.19 1.15 1.16

1 1.19 1.18 1.12 1.1
1.33 1.16 1.16 1.11 1.1
1.66 1.16 1.15 1.1 1.09

2 1.14 1.14 1.09 1.09
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