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Single-Commodity Stochastic Network Design with Multiple

Sources and Sinks

Biju K. Thapalia∗ Teodor Gabriel Crainic† Michal Kaut‡

Stein W. Wallace§

30 November 2009

Abstract

This paper examines the single-commodity stochastic network design problem with
multiple sources and sinks. We characterize the structures of the optimal designs and
compare with the deterministic counterparts. We do this primarily to understand what
constitutes good robust network designs, but hope that the understanding can also be
used to develop better heuristic algorithms than those available today.

Keywords: single-commodity network design, multiple sources and sinks, stochastic,
correlations, robustness

1 Introduction

Many operations-research (OR) applications, as well as problems in computer science, applied
mathematics, and many fields of engineering and management are based on network formu-
lations with an underlying design problem, see for example Ahuja et al. (1995). Today’s
complex supply chains require goods and information to be distributed in many layers and
in integrated ways. Increased competition force decision-makers to study the whole supply
chain, all the way from suppliers to end consumers, trying to achieve overall optimality.

Network design has been a major area of research for the last four or five decades and
shows great diversity in methodology, see for example Scheibe and Ragsdale (2009). But
still we know very little about the structural characteristics of the optimal designs. We are
interested in revealing structural properties of the designs that can be used to understand /
evaluate designs even without solving the corresponding design problems.

It is evident that in most cases, at the time when a network is designed (or expanded),
the demand or supply that it will later face is uncertain. Traditionally this is not taken into
account during the design phase, but rather, the handling of uncertainty is postponed to
the operational phase of the problem at hand. While it is true that the actual handling of
uncertainty – meaning the reaction to revealed information – by definition, must take place
when it occurs, it is equally clear that different designs offer different opportunities for how
the uncertainty is handled, in particular, how costly the handling might be. This principle is
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well explained in for example Yen and Birge (2006). A discussion may also be found in Ball
et al. (2007). So apart from understanding designs in general we are particularly interested
in understanding how designs stemming from assuming deterministic demands differ from
designs where uncertainty is included already in the design phase of a project. We ask: Does
it matter? Are there recognizable differences between the two designs? Technically speaking,
we shall compare, in different ways, designs coming from two-stage stochastic programs (where
the design is stage 1 and the commodity flows stage 2) and their deterministic counterparts
(where random demand is replaced by expected demand).

A common way to handle this situation is to perform single- or multi-parameter sensitivity
analysis in order to understand how the optimal solution changes as a function of demand.
This approach might seem appropriate, but in fact it is not. This is outlined in detail in
Wallace (2000) and Higle and Wallace (2003). Logically, when performing sensitivity analysis,
one is assuming that the design can be postponed until after demand has become known.
So, whether sensitivity analysis is performed or not, we end up with a solution not created
to handle uncertainty, and hence, we may have to face difficult operational decisions when
demand is revealed.

It is old news that a deterministic solution might perform very badly in a stochastic en-
vironment. The reason is simply that it is not made to handle variation in parameters such
as price or demand in a good way. This argument often follows the logic of ”The value of the
stochastic solution”, see Birge (1982). In the network design case, good designs stem from
flexibility in the commodity flows, i.e., the ability to utilize installed capacity across very
different demand realizations. We have illustrated this in Thapalia et al. (2012): the deter-
ministic solution is itself badly suited to handle stochastic demand for the single commodity,
single source, multiple sink network design problem. However, in the same paper we also ob-
served that the structure (i.e., which edges to open) might be similar in the deterministic and
stochastic cases, albeit with rather different capacities installed. Even this kind of similarity
is unusual.

Lium et al. (2009) found consolidation to be a way to hedge against uncertain demand
in their multi-commodity stochastic service network design model. This cannot (of course)
be observed in the solution to the corresponding deterministic model, as the model has no
reason to hedge against uncertainty. The deterministic design might contain volume-related
consolidation, but that is not enough to cater properly for uncertainty. So in that case, not
only is the expected behavior of the deterministic design bad, but also the structure (i.e.
information about which edges to open) is of limited value. A question for this paper is
therefore: As we pass to the case of multiple sources for the single-commodity case, shall
we observe that the structure of the deterministic solution is good (as we observed in the
single-source single-commodity case) or bad as in the multi-commodity case?

Hence, while we focus on comparing stochastic and deterministic designs, it is not primar-
ily to (once again) show the weaknesses of the deterministic solution, but to really understand
in what ways (if any) the deterministic solution is good and in what ways it is bad. We also
hope that this can be used not only to obtain a deeper understanding of the effects of uncer-
tainty on design, but also to develop heuristics for the stochastic case.
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2 Problem description

Given a set of nodes (divided into source nodes, demand nodes, and transshipment nodes)
and a set of potential edges connecting these nodes, the single-commodity stochastic network
design problem with multiple sources and sinks (MSSND) is the problem of determining a
subset of the edges to open (including the edges’ capacities), so as to fulfill the demand at
the demand nodes at minimal cost, taking into account capacities of the source nodes.

In general, the stochastics in this problem arises in the form of demand uncertainties at the
demand nodes, supply uncertainties at the source nodes, and failure of connections (or failure
of certain proportion of capacities in the edges) between the nodes. Demand uncertainties
and edge failures are observed in most real life problems, as it is rare that demand is fully
known when the design is determined or that edges never fail. In this paper, we discuss only
random demand. The design is based on minimizing the sum of the fixed costs of selecting
edges connecting the nodes; linear costs to open capacities in the edges; per unit flow costs
of flows on the edges; and per unit penalty costs for not satisfying demand. Not satisfying
demand can have many interpretations, such as sending the flow at a later point in time, with
another mode, or a straightforward rejection. In any case, in the model, it takes the form of
a penalty cost per unit of unsatisfied demand.

It is important to include the possibility of flow being rejected in the model. The main
reason is that in real life, except in extremely particular situations, it is prohibitively costly to
build a network that can meet any possible demand—however unlikely it might be. Determin-
istic models, operating on expected demand, may reasonably operate under the assumption
that (average) demand must be met. But even there, there will normally be an understanding
that some demand may end up being turned down in reality. When working with stochastic
demand, there is also the problem that requiring demand to be met turns the model into
a worst-case model, where the worst-case in most cases is not even well understood. So, in
total, we find it crucial to include the possibility of not satisfying all the demand. We use the
same formulation also in the deterministic models, to make the results comparable.

We shall let all source nodes have the same capacity so that our focus will be on the
random demand. Hence, our assumption is that a set of demand nodes will have their random
demands satisfied from a set of equally-sized source nodes.

In the deterministic case, the demand in each node is fixed at the expected demand from
the stochastic case. This corresponds to the classical case of a single-commodity multiple
source network design problem. The first stage decisions in this problem are to decide which
edges to open and what capacities to install. The second stage decisions are the flow decisions
in the given network. The recourse action here is described by a penalty cost incurred for not
satisfying demand.

2.1 Mathematical formulation

Let G = (N , E) be a network defined by a set N of n nodes and set E of m edges (undirected
arcs), where

E ⊂ {k = (i, j) : i ∈ N , j ∈ N and i < j} .

Each edge is indexed either by i, j or by k.
The random demand is described by a set of scenarios S, where each individual scenario

s ∈ S has one demand realization for each demand node. We shall discuss in Section 3.1 how
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the scenarios were generated. The notations for the sets, parameters, and variables associated
with this problem are as follows:

Sets:
C set of all source nodes;
D set of all demand nodes;
T set of all nodes with zero demand (transshipment nodes); T = N \ (C

⋃
D);

S set of all scenarios s.

Parameters:
M maximal arc capacity; used for linking capacities and open arcs in (5);
R unit cost of unsatisfied demand;
P s probability of scenario s ∈ S;
Ck flow cost on edge k ∈ E ;
Gk fixed setup cost for edge k ∈ E ;
Hk variable setup cost; the cost for adding one unit of capacity to edge k ∈ E ;
Vk initial/ existing capacity on edge k ∈ E , if any;
Ds

i demand (Ds
i < 0) in node i ∈ D in scenario s ∈ S;

D supply in each source node, D > 0.

Variables:
xsk = xsij flow on edge k = (i, j) ∈ E going in direction i→ j, in scenario s ∈ S;

zsk = zsij flow on edge k = (i, j) ∈ E going in direction j → i, in scenario s ∈ S;

uk new capacity that is developed on edge k ∈ E ;
esi for i ∈ D, this is the unsatisfied/lost demand in node i in scenario s ∈ S;

for i ∈ C, this is the unused capacity of source node i in scenario s ∈ S;
yk 1 if edge k ∈ E is developed, 0 otherwise.

We assume that total supply from equally-sized source nodes equals maximal demand in
the network, so that

D = max
s
{
∑
j∈D
{Ds

j}}/|C| (1)

where |C| is the number of source nodes.

Our overall problem is hence:

min
∑
k

Gkyk +
∑
k

Hkuk +
∑
s

P s

{∑
k

Ck (xsk + zsk) +R
∑
i∈D

esi

}
(2)

Subject to:

∑
j: (ij)∈E

(
xsij − zsij

)
−

∑
j: (ji)∈E

(
xsji − zsji

)
=


0 ∀i ∈ T ,∀s ∈ S
D − esi ∀i ∈ C ,∀s ∈ S
Ds

i + esi ∀i ∈ D , ∀s ∈ S
(3)
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xsk + zsk ≤ uk + Vk ∀k ∈ E ∀s ∈ S (4)

uk ≤Myk ∀k (5)

0 ≤ esi ≤ −Ds
i ∀i ∈ D; ∀s (6)

xsk, z
s
k, uk, e

s
i ≥ 0 and yk ∈ {0, 1} ∀k;∀i; ∀s (7)

The objective function (2) minimizes the total costs of the network. The first part is
the costs of constructing all new edges, the second part the costs of building all the new
capacities, the third part the expected flow costs through all the edges and the fourth part
is the expected penalty costs of not fulfilling demand. Constraints (3) model conservation of
flow at nodes. The left-hand side is the net outflow from node i, which must be zero for all
transshipment nodes i ∈ T and is equal to the unused capacity for source node i ∈ C. For the
demand nodes, the net outflow must be equal to the satisfied demand; since Ds

i is negative
in this case, the right-hand side is the a difference between the scenario demand Ds

i and the
(positive) unsatisfied demand esi .

Constraints (4) represent the flow limit in each edge. The left hand side of the equation is
the net flow on edge k which should be less then or equal to the total capacity of the edge. Since
we do not start with any initial/existing capacity in our test cases, we always have Vk = 0.
Note that in an optimal solution, an edge will never have flow in both directions. Constraints
(5) show that new capacity uk can be developed only if edge k is built. Constraints (6) give
bounds for the rejection amount and finally, (7) insure that all variables are non-negative and
the edge constructions binary.

For the deterministic counterpart we replace the stochastic demand by its expectation.
We model the problem in AMPL and solve it to optimality using CPLEX 9.0. The solution

time varies from few seconds to 5 hours depending on the case, on a PC with 3 GHz Intel®
CPU and 8 GB of RAM.

3 Experimentation and Computational Results

The tests have two related goals. First we primarily focus on the quality of the deterministic
designs by trying to understand how they differ from their stochastic counterparts, and to
what extent solving a deterministic problem will guide us toward a good design in a stochas-
tic environment. Does the deterministic design contain useful information, or is it totally
misleading if the real setting is that of stochastic demand? In the second part we try more
directly to characterize good designs, assuming that the stochastic design model is the ap-
propriate one. Our goal is to make qualitative statements about what characterizes of a good
design in light of random demand. These two questions are of course related, but we find it
useful to have these two focuses.

In order to answer these problems we have constructed a number of test cases. These are
now described together with our scenario generation approach.

3.1 Test instance generation

We have used seven different network instances. The first four instances, namely Germany,
Nobel-EU, NY, and US are telecommunication examples from the SNDlib library (Orlowski
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et al., 2010), with some modification to suit our problem’s needs. The fifth case was gen-
erated by us and named Molde and the last two, Montreal r06.1 and Montreal r10.1 were
obtained from CIRRELT (Interuniversity Research Center on Enterprise Networks, Logistics
and Transportation), Montreal. The names of the instances do not mean anything particular
in our computational setup.

It is worth noting that in all cases from SNDlib and Montreal, the test instances are
multi-commodity network design problems, so not all parameters can be used directly by us.
We only kept the coordinates (where available) for the nodes and the fixed setup cost Gk for
the edges. The values for the other parameters – variable setup costs Hk and flow costs Ck

– are all chosen proportional to the Euclidean distance between the node pairs. The cost of
unfulfilled demand R is derived for each test case using some multiple of the highest value
of the fixed plus variable setup cost for an edge in the network. We made sure that R is
not driving the solution. The results in the first part of Section 3.3 are based on test cases
with these cost structures. In the second part of the section, we changed the fixed costs to
understand their relative importance.

The Montreal test instance does not have node coordinates, so we used Graphviz (Gansner
and North, 2000) to draw the graph using fixed setup cost as distance measure. The graphs
of the test instances Nobel-EU, US and Molde are planar whereas the graphs of the test
instances Germany, NY, Montreal r06.1 and Montreal r10.1 are non-planar.

For each of the seven problems, we picked 3 sets of nodes (2 in the case of Montreal r06.1)
as possible source node sets, thus creating in total 20 base test instances. These 20 different
versions of the problem instances are presented in Table 1. A set of source nodes contains
three or four nodes depending upon the test instances; the number of source nodes for each
test instance is listed in the fifth column of Table 1.

Given the difficulty of solving the stochastic network design problem to optimality we
kept n (the number of nodes) below 30 and m (the number of edges) below 50 for the first
six cases, while for the Montreal r10.1 cases we have up to 87 edges.

Table 1: The different test cases. Test case Molde is generated by us. For the others, the
names have been kept, even though the cases are adjusted to our needs.

Problem name # nodes # edges # demand nodes # sources # source sets

Germany 29 48 9 3 3
Nobel-EU 28 41 8 4 3
NY 16 41 7 4 3
US 26 42 9 3 3
Molde 22 45 8 4 3
Montreal r06.1 10 37 5 3 2
Montreal r10.1 20 87 6 4 3

We know from the work of Lium et al. (2007) that correlations might be important in shap-
ing the structure of the network. Hence, we further create 3 cases for each problem instance:
one with uncorrelated demands, one with positively correlated demands (all correlations are
set to 0.7), and one with mixed correlated demands: the demand nodes are put into groups
such that each group contains about half of the total number of nodes. All correlations within
a group are set to 0.7, while between groups we use −0.7. All of this leads to positive definite
correlation matrices. Thus we have in total 60 test cases.
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As stochastic programs need discrete distributions to represent the stochastics, we dis-
cretized the chosen distributions (discussed below) by creating scenarios each having equal
probabilities to occur using the moment-matching method from Høyland et al. (2003). In
the absence of reference to a particular distribution representing the random demand we
chose to use truncated normal distributions with mean equal to the deterministic demand
(from the underlying cases) and standard deviation equal to 25% of the mean to represent its
stochasticity.

The decision on the number of scenarios used to represent the stochastics is critical as we
want to be sure we study the effects of randomness on our model, and not some random effect
of the scenario generating procedure. There is a trade-off between the quality of scenarios
representing the underlying distribution reasonably well and the time needed to solve the
stochastic program to optimality. As we increase the number of scenarios, we increase the
quality of the representation of the distribution, but also decrease the chance to solve the
model to optimality within a manageable time. In our case, we generated 100 scenarios to
represent the distributions as this gives us in-sample stability and manageable solution times.
The in-sample stability is checked by solving the same problem repeatedly with different
100-scenario trees. This lead to a coefficient of variation (the standard deviation divided
by the mean) of less than 1%, except for the cases of ’NY’, ’Molde’ and ’Nobel-EU’ where
it was 1.2%, 3.9%, and 4.8% respectively. The cases of ’Molde’ and ’Nobel-EU’ have very
high rejection costs, so even a minor change in rejection volume results in a large change in
objective function value.

With these values we are satisfied that we have in-sample stability for the problems at
hand. Since this is a necessary, but not sufficient, property of a satisfactory scenario generation
procedure, we also check out-of-sample stability. Out-of-sample stability is checked by creating
scenario trees with 1000 scenarios using sampling and then evaluating the solutions over those
scenarios. The evaluation is performed by re-optimizing the flow in the network with given
designs i.e., fixing the first stage variables of problem (2) to (7), representing the network
design under evaluation. The procedure is repeated 10 times for a given network design and
the objective values are compared by again calculating the coefficient of variation. For our
problem, out-of-sample stability was achieved as the coefficient of variation for all the test
instances was less then 0.2%, except for the cases ’NY’, ’Molde’ and ’Nobel-EU’ where it was
2.9%, 1.4%, and 2.6% respectively. For more discussion on this subject we refer to Kaut and
Wallace (2007).

Finally, we have to reconsider the definition of the supply D given in (1): since it depends
on the actual realizations of the stochastic demands Ds

j , it would be different for the three
versions (with different correlations) we generate for each test case, making it difficult to
compare the results. To avoid this problem, we calculated D for each of the three correlation
versions of a given case and used the median of the three D’s as our demand size in all three
versions.

3.2 Comparison Tests

As outlined in the Introduction, the deterministic solution, by its nature, has a worse expected
behavior than its stochastic counterpart. However, we would like to understand more about
why this is the case, and in what sense it is worse.

In order to check the quality of the deterministic designs, as well as comparing them to
the stochastic ones, we have set up three tests, named comparisons. Whenever a comparison
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is performed, we take the deterministic and stochastic designs – or parts thereof – (i.e. the
first-stage solutions) and evaluate them using reference trees – in our case trees with 1000
scenarios, to make sure we have good approximations of the true distributions. The costs
from the design and evaluation phases are added up, making the reported costs comparable
across all tests.

A word of warning might be worthwhile here. If a stochastic programming problem, as
well as its deterministic counterpart, use hard constraints in the formulation, the deterministic
solution will normally be infeasible in the stochastic formulation (caused by capacity problems
when demand is high), and hence, its expected cost will be infinitely large. On the other hand,
if soft constraints are used, the deterministic solution will normally be feasible in the stochastic
model, but its expected performance can be made arbitrarily bad by choosing large penalties
on the soft constraints. This way, it is always possible to make the deterministic solution look
bad. We shall, however, set the penalties at reasonable levels, and our goal is to understand
how the deterministic solutions relate to their stochastic counterparts. So, we shall certainly
present numbers, and we do believe the numbers are informative. But there will never be
really objective numerical results in this setting.

The three comparisons are:

A The classical test where the whole first-stage solution is evaluated out-of-sample. This
amounts to solving a 1000-scenario stochastic program with all first-stage variables
(designs and capacities) fixed, so in fact this equals the solution of 1000 independent
second-stage problems. Since the second stage does not involve any integer variables,
this is very fast.

B Only edge information is imported from the first stage. So, in a 1000-scenario stochas-
tic program, all discrete variables y describing opened and closed edges—we call it a
skeleton—are fixed and the stochastic program is run. So the model is allowed to install
any capacity on the opened edges (also lower than in the deterministic case), but not
to open new ones.

C The whole design (both the skeleton and its capacities) is taken as input to the 1000-
scenario stochastic program. The stochastic program can then add new capacities on
already opened edges (paying only variable setup costs) and new edges (paying both
fixed and variable setup costs). Hence, all capacities opened in the deterministic case
add cost to the objective function, even if these are not needed in the final design.

The purpose of Comparisons B and C is to check if the design from the deterministic
solution really is good for the stochastic case, and if it bad, in what way it is bad. By
making edges from the deterministic case “free” in two different ways, the stochastic programs
(as defined in the comparisons) are guided toward the deterministic solution. This way we
compare if stochastic programs solved with input from the deterministic solutions behave
much worse than stochastic programs which have no deterministic input (they will never
behave better).

So, Comparison A is the classical test of the quality of the deterministic solution. Com-
parison B, on the other hands, checks if we can use a deterministic method to determine the
skeleton and then solve a stochastic linear program to set the capacities. If Comparison B
comes out with good results for the deterministic solution, it points to an alternative solution
procedure that avoids solving a stochastic mixed integer program: First use a deterministic
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Figure 1: Results of the Comparison Tests. Ratios between the expected objective values,
obtained from importing the deterministic solution into the stochastic setting,
and the expected objective function value of the stochastic solution.

method to find the skeleton, then a stochastic linear program to set capacities. This represents
a severe saving in computation (if it works well, of course).

Comparison C can be seen as testing what happens if we first solve the deterministic design
problem and implement the solution, but then discover that it is not very good, and wish
to update it. If Comparison C comes out well for the deterministic solution, a deterministic
design can be corrected and become almost optimal for the stochastic case provided setup
costs must not be paid again. If Comparison C comes out badly, the costs of updating a
deterministic design in light of uncertainty in demand will be high. Note that Comparison
C is itself a stochastic mixed integer program, so in most cases it does not represent an
alternative solution approach. In our tests, though, Comparison-C with 1000 scenarios is
faster than the original stochastic problem with 100 scenarios. But for large problems, both
are unsolvable.

In what follows of this section, we discuss the major findings, details are given in the
Appendix. Our first need is to understand the relationship between the stochastic and deter-
ministic solutions. We therefore perform Comparisons A, B and C as discussed in Section 3.2.
That is, for all our 20 deterministic cases, we solve the corresponding network design problem.
Also, we solve all 60 stochastic cases, representing the stochastic versions of the deterministic
cases (each with three different correlation structures).

Then each of the 20 deterministic designs are imported into its three stochastic counter-
parts (the three different correlation matrices). This is done for all three comparisons. In
all cases, as outlined earlier, the evaluations are done out-of-sample using 1000 scenarios.
Figure 1 shows the results, where also the stochastic designs are evaluated out-of-sample.

3.3 Inheritance from the deterministic solutions

The deterministic solution is bad in the stochastic environment, and inheriting the structure
(the skeleton) is also not good, see Figure 1. For Comparison A, the deterministic solutions
have expected objective function values which are from five up to almost 1600% higher than
that of their stochastic counterparts with mean value of 200%. For Comparison B errors are
from 0% up to little over 300% with mean value of 61%. On the other hand, for Comparison C
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Figure 2: Results for cases with higher cost of first stage decision. Ratios between the
expected objective value, obtained from importing the deterministic solution for
the test cases with high fixed and variable setup cost into the stochastic setting,
and the expected objective function value for the stochastic solution.

the errors are very low, from 0% up to just 9% with mean value of 2%. This shows that when
we allow to add new edges and open new capacities, the deterministic design can be updated
to become almost as good as the stochastic design. (Note that in these tests we might observe
that the deterministic design is better than the one coming from a 100-scenario stochastic
model, since both designs are evaluated out-of-sample with 1000 scenarios. We have observed
one single case which can be seen in Figure 1.)

Now, if we look at Figure 2, which compares the cases where the costs of the first stage
decisions (the fixed and/or variable setup costs) are highest (the test instances of Molde,
Nobel-EU, and NY), then we see that the best design for Comparison A is 4.17 times more
costly than its stochastic counterpart. And on average, the deterministic design produces
expected costs that are 10.22 times what a stochastic model would produce. If we further
look only at certain components of the overall costs for these cases, which are presented in
Figure 3, we find that on average, the costs for opening edges are just 74%, and capacity built
is just 62%, of that in the stochastic designs. This indicates that the solutions are far from
the optimal structure both in terms of edges opened and capacities built.

So what do we see? Not very surprisingly we observe that the deterministic solution
behaves rather badly in a stochastic environment, implying that the common practice of
creating a design based on expected values and then handling randomness operationally is
not a very good idea—the costs can be astronomical. One reason for this is simply that the
deterministic design does not install enough capacity – even in our case where the penalty
is set at a very reasonable level. So what if only the skeleton – the edges to be opened – is
imported from the deterministic design, and the capacities are set as in Comparison B? This
is computationally effective, as solving the stochastic program of Comparison B is very simple
even for huge problems (it has no integer variables). It helps, of course, but we can still be
several hundred percent off, which in most cases is not acceptable. There are situations where
Comparison B does well, but it isn’t easy to know upfront if a given case is of that type.

The results of Comparison C are worth an extra comment as they do not represent a
very common situation: if the deterministic design is taken as a starting point, a very good
(even if not optimal) design can be found by adding extra edges and capacities on top of the
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Figure 3: Components of result. Ratios of the fixed and variable setup costs obtained
from importing the deterministic solution, for the test cases with high fixed and
variable setup cost, into the stochastic setting divided by the fixed and variable
setup costs for the stochastic solution.

deterministic one. In our test cases, we never lost more than 9% that way. This is still a large
number in many cases, but given the uncertainty in the model (which of course is always
there) this is not bad. Computationally, we must then solve a deterministic design problem
first, and then a stochastic one (Comparison C). This stochastic program has substantially
fewer integer variables than the original one, but can still be expected to be as unsolvable
as the original one for practical problems. This is not the main point, though. The main
observation is that the deterministic solution can be updated to become very good even in a
stochastic environment.

It is worth mentioning that the results in Comparison C are not in line with the general ob-
servation that a stochastic solution is normally not the deterministic one “plus something”—
see Wallace (2010) for reasons why. In our case that is exactly what we observe (genuinely or
as a good approximation): the stochastic design equals the deterministic design plus “some-
thing”.

For the single-source case, as described in Thapalia et al. (2012), Comparison B came out
rather well contrary to what we observe here. This difference can mainly be attributed to the
fact that we now have many source nodes with limited supply capacity. As we minimize costs,
the deterministic skeletons have many short paths, we term them arms, connecting individual
source nodes to nearby demand nodes. If not generally, this typically gives us a forest of small
trees. Just adjusting the capacities of these trees is not enough to find good designs. When
there is only one supply node, the deterministic skeleton is a tree, and hence, all nodes are
connected, even if the connections are not optimal. When the skeleton is a forest, there are
simply too few connections.

We know from Lium et al. (2007) that correlations may play important roles in shaping
the solution structure of the stochastic problem in terms of sharing capacity and taking
benefit from variation in demand. By importing the deterministic solution into the stochastic
problem, the deterministic solution structure with short arms from each source node cannot
benefit from this variation in demand. Hence we see poor performance in Comparison A. This
is more evident in the cases where we have higher setup costs (fixed, variable, or both) as
these result in deterministic designs with particularly short arms. Consider Figure 4, where
we observe that it is worse in the uncorrelated and mixed correlated cases as compared to
the positively correlated cases. This is natural since with strong positive correlations there is
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Figure 4: Results for Comparison A for the cases with higher cost of first stage decision.
Ratios between the expected objective value, obtained from importing the deter-
ministic solution into the stochastic setting, and the expected objective function
value for the stochastic solution.

less to be gained from joint use of edges in any case.

Relation between the number of source nodes and inheritance

The extreme case—one source node—was covered in Thapalia et al. (2012). In that case
both Comparisons B and C were rather good. We have already seen that for three or four
source nodes - as in this paper - Comparison B is no longer very good, while Comparison C
remains very strong. With high setup costs this is even more evident, as that will cause the
skeleton to be as minimalistic as possible in terms of the number of edges. We wonder if also
Comparison C will become weak as we get more source nodes.

Some of this we already understand: With one source node, the deterministic skeleton is
a tree (not necessarily spanning because of the transshipment nodes), while as the number of
source nodes increases, we tend to get several trees, in the extreme case, one for each source
node, and the ability to share capacity when randomness hits becomes steadily lower. Com-
parisons A and B, limited by the deterministic skeleton, suffer from this lack of connectedness
– as it prevents sharing of supply capacity – and hence they do not do very well.

In order to better understand the effect of the number of source nodes, we have increased
the number of source nodes for a few cases. What we observe is that Comparison C gets
steadily worse as the number of source nodes increases. However, be aware that it is not easy
to define what “these two cases are the same except that one has more source nodes than
the other” means. The reason is that as the number of source nodes increases, the whole
network design problem changes, and comparisons become unclear. In this paper we are
limited to cases we can solve to optimality. That prevents checking the fate of Comparison C
for really large cases. Within what we could check, we found that Comparison C got worse as
the number of source nodes increased, but remained very good throughout, the deterministic
solution never being more than 10% worse than the stochastic one.

So, it seems, taking the deterministic design and adding edges and capacities produces
good solutions. Note again, however, that since Comparison C is also a stochastic integer
program, it it likely to be as unsolvable as the original stochastic program for large realistic
cases.
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Fixed costs

We want to make sure that the observations of how the stochastic solutions differ from the
deterministic ones do not depend on the cost structures we have used. So we turn to testing
these results when we vary the way setup costs are distributed between fixed setup cost Gk

and variable setup cost Hk. Let L be some large positive number, selected conveniently.
Here we take it to be 25% of M . For each of the 20 test cases, we calculate for each edge
Ck = Gk + LHk. Then we redistribute Ck in five different ways:

a Fixed setup cost 0.1% of Ck and variable setup cost 99.9% of Ck/L

b Fixed setup cost 5% of Ck and variable setup cost 95% of Ck/L

c Fixed setup cost 25% of Ck and variable setup cost 75% of Ck/L

d Fixed setup cost 50% of Ck and variable setup cost 50% of Ck/L

e Fixed setup cost 99.9% of Ck, and variable setup cost 0.1% of Ck/L.

All tests described earlier are now performed for each of these five cases and results are
shown in Figure 5. The tests are performed with 100 scenarios. Some test instances which
CPLEX could not solve within 15 days are ignored.

We find that the deterministic design is, as before, rather bad in the stochastic environment
(with errors up to nearly 2700%), while Comparisons B and C are getting somewhat worse,
in particular when the fixed setup cost is low and the capacity cost is high. This is natural
since in that case the cost of opening one edge with a given capacity costs basically the same
as opening two edges with the same total capacity. Hence, the structures enforced upon the
solutions in Comparisons B and C become more costly. We see errors up to nearly 700% in
the case of Comparison B, and up to 11% in the case of Comparison C—still quite good. The
results seems little dependent on correlations. The details of the results are presented in the
Appendix.
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3.4 Structural differences

So far we have discussed different ways to bring the deterministic design into the stochastic
environment to understand to what extent the deterministic design is useful in creating good
solutions. Now we shall pass to a more direct comparison of the the structures of the stochastic
and deterministic designs, instead of just looking at their expected costs.

The optimal structures in single-commodity network design seem to be more complicated
to understand than those of the corresponding multi-commodity cases. The main reason is
that in the multi-commodity case the commodities only share edge capacities whereas in the
single-commodity case there is also the phenomenon of flow cancellation. So while it is easier
to solve single-commodity flow problems (as standard network flow theory can be applied
directly), the optimal design is harder to characterize.

As already pointed out, the stochastic designs tend to have more capacity and more edges
than the deterministic counterparts. For the cases of uncorrelated and mixed correlated
demands, the extra edges and capacities are mainly there to cater for capacity sharing. This
results in loop formations, leave connections, and connections between different clusters of
nodes. The trees with few short arms, typical of the deterministic skeletons, will generally
not allow sharing based on some demands being large when others are small simply because
there are few demand nodes in each tree, and there is no particular reason why demand nodes
with negatively correlated demand end up in the same tree.

In the cases of positive correlations, the edges and capacities are mostly there to cater for
the high-demand scenarios. Two phenomena occur: The high demand scenarios (which now
have high probabilities attached to them) need much more capacity than the deterministic
(expected value) case, and the limited capacity of the individual source nodes makes it neces-
sary to connect them so that all supply is used well. These connections are simply to few (if
at all) in the deterministic designs. In other words, even though the demands are positively
correlated, there is some variation, and connections are needed to utilize overall supply.

Let us now turn to a more direct study of the stochastic designs rather than primarily
comparing stochastic and deterministic designs to understand the qualities of the deterministic
ones. We know that good designs stem from flexibility in the routing of flow, and the goal
is then to understand how this is achieved. We shall do this by studying the problems from
Section 3.1. Some of the results are “obvious” meaning that good robust designs are, at least
structurally, not so difficult to understand. We consider this a strength.

Similarity in designs

The deterministic skeletons are trees (not spanning trees) with arms emerging from the differ-
ent source nodes. If the supply capacities are tight, the trees might be connected to each other
so that the supply nodes can help each other satisfy demand in “their” demand nodes. These
skeletons are contained within the stochastic designs under certain conditions. Remember
that the trees from the deterministic designs represent the cheapest way to connect to the de-
mand nodes in the average case. Hence, if the capacities of the source nodes are high enough
to handle high demand scenarios, then we often see that the deterministic skeletons are part
of (or even the same as) the stochastic skeletons. Figure 6 compares the deterministic design
with two stochastic designs, one with high demand variation and one with low. (Solid edges
(blue) are installed with the given capacities, light (grey) edges are not installed. The dark
(yellow) square nodes are the supply nodes, the shaded (green) circular nodes are demand
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Figure 6: Comparison between deterministic and stochastic structure. Deterministic (top
left), stochastic with high variance (top right) and low variance (bottom) solu-
tions of the NY 02 test case showing that the stochastic solution structures are
similar to the deterministic ones in the low variation demand case, but rather
different in the case of high variation.

nodes, and the white circular ones transshipment nodes. This color scheme is followed in
all subsequent figures.) The low variation case has the same skeleton as the deterministic
design. This is because with lower variation the source nodes still have sufficient capacities to
fulfill the demand in most scenarios (there is some unsatisfied demand). The higher variation
case results in high demand scenarios, where some source nodes may have insufficient capac-
ity to fulfill the demands of “their” demand nodes and hence we see a re-alignment of the
distribution patterns to fulfill more demand than would be possible from the deterministic
skeleton.

Also when setup costs are substantially lower than flow costs, the deterministic skeletons
are contained in the stochastic skeletons. This is because the deterministic design represents
the cheapest way to transport the bulk of the demand. Longer routes will result in substan-
tially higher flow costs. On top of the deterministic solution, new edges needed to facilitate
high demand scenarios and coordination of source nodes are cheap to add. In Figure 7 we see
that both the mixed correlated and uncorrelated cases contain the deterministic skeleton, and
add a few extra edges to meet higher demands. For example, the demand node 15 connects
to source node 2 (for uncorrelated case) and node 15 & 3 get connected to source node 12 (for
mixed correlated case ) in the stochastic solution. This helps satisfying the higher demands.
But the deterministic skeleton is fully used in the stochastic designs.
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When source nodes are far from the demand nodes, we also find the deterministic skeletons,
more or less fully, within the stochastic ones. Consider Figure 8. In the first column we see a
case where the deterministic skeleton is almost kept. This is because source nodes 2 and 12
are in the corners of the graph and both are far from demand nodes 22 and 20. Hence, the
paths needed to reach those demand nodes are long. In that case it is usually better to keep
these cheapest connections even in the stochastic case. But even so, the mixed correlated
case is different. This is caused by another feature of the stochastic solution which we shall
discuss later in the section on negative correlations. For the case in the second column, the
skeleton is not retained, as here the source nodes are very near to the demand nodes and
hence have the possibilities to utilize variation of demand and re-align the design.
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Figure 9: Consolidated paths. Deterministic (top) and stochastic (bottom) solutions of
Molde and Nobel EU test cases, showing that the stochastic solution structures
have consolidated paths which are not in the deterministic solutions.

In the stochastic design we sometimes observe that there are paths which act like highways
carrying supply and demand for many nodes. This is more evident in the cases where the
setup costs are very high, especially when variable setup costs are proportionally very high.
This can be explained by the fact that as the setup costs are high, it becomes beneficial
to consolidate demand of different nodes in order to reduce the total installed capacity. In
Figure 9, we show two cases where variable setup costs are comparatively much higher than
other costs. The first set of figures shows a consolidated path 22–21–20–15–14–13 efficiently
connecting nodes on the path and one edge away. The path is also part of a loop (see later).
This is better according to the out-of-sample evaluation, even though most individual demand
nodes now have longer paths to the source nodes. Here it is possible, for example, to use free
capacity available on the path to reach demand nodes 16, 18 and 8 from source node 22.

18



In the second set of figures we see that demand nodes 20 and 16 are connected with source
node 12 via transshipment node 1 instead of the shorter (in terms of fixed and variable setup
costs) path via node 10, as in the deterministic design. If we look at the stochastic design in
more detail, we observe that edge 1–13 has 200 units of capacity installed, while 1–7 and 7–20
have 388 units of capacity. These add to 588 units of capacity usable for source node 12. But
only 421 units of capacity are installed on edge 12–1. This makes sense since by consolidating
the flow from source node 12 to nodes 20 and 16 with the flow to node 13 (and onward), the
capacity into node 1 can be set 167 units lower than the outgoing capacity (this statement
makes sense even though the edges are not directed). Thus, consolidating flow saves costs in
total even though the paths used may be longer and costlier than in the deterministic case.

But this feature may not be attractive when the setup costs becomes low i.e., when flow
costs matter much for the optimal design. Then sharing does not create sufficient savings as
flow costs more than offset the savings in setup costs.

Loops

The stochastic design sometimes has loops. That will never happen in the deterministic case
as long as there are no effective upper bounds on edge capacities. Two types of loops are seen,
one where the source node(s) are part of them and the other is where the loops are formed
with nodes excluding source nodes. In Figure 10 we see both types of loops. In the second
chart of the figure, we see that loops 3–5–4–2–3, 11–12–7–9–11, and 11–16–14–17–7–9–11
are formed having a source node in them. The third chart shows a loop 16–13–15–18–14–16
without a source node in it.

The first kind of loop takes advantage of free capacity available in one of the arms of the
deterministic skeleton to fulfill demand of some demand node lying on a different arm. An
extra edge, connecting the two arms, makes a loop and helps satisfy demand. For the second
chart of the figure, demand node 4 has a maximal demand of 1803 in one of the scenarios,
whereas the path serving it (edges connecting 3, 2, and 4) has 1421 units of capacity. Here,
the free capacity available on the path 3–5–12 is utilized by building an extra edge 5–4 to
form a loop to serve most of this higher demands of node 4. In the third chart of the figure,
we see a loop created by adding an extra edge 16–14 to the deterministic solution. Here the
loop is formed to fulfill higher demand scenarios of node 14. This loop provides more supply
to demand node 14 than the capacity we see in path 11–16–14, as extra capacity of the path
16–13–15 is utilized to serve node 14.

And if we look back at the second network in Figure 7, we see that node 28, a leaf in
the deterministic design, gets connected to the path 12–13–29–25 by an edge 28–29 to form
a loop. This is because it is cheaper to add the extra edge 28–29 with some capacity than
increase capacities all the way on the paths 12–6–23–17–28 and 12–13–29 to satisfy demand
of nodes 28 and 29 respectively. This edge is valuable as it can be use in both directions, to
supplement demand needs of nodes 28 and 29.

Negative correlations

A very basic hedging principle is seen when source and sink nodes are linked. This principle
does not show in the deterministic solutions. A source node is typically linked with demand
nodes with negatively correlated demands, so that variation in demand can be utilized. In
Figure 11, we see that in the mixed correlation case demand node 16 is connected to source
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Figure 10: Loop formation in stochastic solution. Deterministic (top), uncorrelated (mid-
dle) and positively correlated (bottom) stochastic solutions of US 02 showing
that the stochastic solution structures have loops which are not in the deter-
ministic solutions. Note that the values in the figures are one-tenth of actual.
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Figure 11: Pairing of negatively correlated demand nodes. Deterministic (top left) and
three correlated cases of stochastic solutions–zero (top right), mixed (bottom
left) and positive (bottom right)–of NY 04 test case showing that in the stochas-
tic solution negatively correlated demand nodes 11 and 16 get connected to
same source node.

node 10 which is also supplying demand node 11. This is because demand nodes 11 and 16
have negatively correlated demands. In the other cases, demand node 16 is served by source
node 15. Similarly, we observe that positively correlated demand nodes are disconnected.
Refer to the bottom-right chart of Figure 9 of Nobel 01 mixed correlated case where posi-
tively correlated demand nodes 20 and 24 are no longer connected the way they were in the
uncorrelated case.

4 Conclusion

The purpose of this paper has been to understand what constitutes a good robust design for
a single-commodity stochastic network design problem with multiple sources and sinks. This
paper discusses only randomness in demand.

We observe that the deterministic solution can be very bad with respect to expected
behavior. But still we see certain structural patterns re-emerging in the stochastic solutions.
First we observe that the deterministic solution behaves worse in the stochastic environment
as the number of source nodes increases. With many source node, the deterministic solution,
which is a forest, typically of many trees, decreases the ability to share capacity in a stochastic
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environment. Also, as correlations are of no concern in a deterministic setting, the assignment
of demand nodes to source nodes may be rather far off what is optimal.

If the variation in demand is moderate or low, the deterministic skeleton (being a forest)
can be used to carry a major portion of the flow, needing very few additional edges in the
stochastic environment. As the variation increases, the source nodes will have insufficient
capacity to fulfill demand using the deterministic skeleton (irrespective of installed capacities),
and hence will need more edges. Therefore, a re-alignment of distribution patterns will emerge.
However, when the fixed and variable setup costs are low compared to the flow costs, the
deterministic skeleton is contained in the stochastic one, with only few extra edges added,
even in cases of higher variation in demand.

For uncorrelated and positively correlated demands existing far from the source nodes,
we keep the portion of the deterministic skeleton that contains paths leading up to clusters
of demand nodes. However, within a cluster of demand nodes we observe changes from that
of the deterministic solution, in order to benefit from demand variations.

With high variable setup cost, we see consolidation of capacities in paths reaching down-
stream demand nodes. These paths will emerge more so between demand nodes which are
negatively correlated. However, with increasing proportion of flow cost in deciding the optimal
solution, this consolidation will be weaker.

Networks with all types of possible correlations among demands show loops in the stochas-
tic solution. The loop formation gets stronger with increasing variable setup costs.

Source nodes choose demands to serve according to the possibility for hedging among
them. Hence, everything else being equal, negatively correlated demand nodes are most
likely to be served from the same source node. This also results in the breaking or weakening
of links between positively correlated demand nodes relative to the deterministic solution,
which has no such concerns.

In total, the main observations of optimal designs are therefore as follows. Note that
the observations are connected, and to some extent see the same phenomena from different
perspectives.

• Especially with high setup costs, the deterministic design tends to be a forest of small
trees. This is particularly bad in a stochastic environment. The good robust designs
will contain many more connections than the deterministic counterpart, and the design
will contain loops.

• From a demand node perspective: When negative correlations in demand are present,
the design should be such that nodes with negatively correlated demands share paths
to one or more source nodes. If there are no negative correlations, it is still important
to utilize variation in demand to reduce investments by looking for as small (albeit
positive) correlations as possible.

• From a source node perspective: If supply capacity is limited, a source node needs
to be connected to several demand nodes, preferably nodes with as small correlations
(negative if feasible) in demand as possible, so as to be able to use its supply capacity
well in all scenarios.

• Especially with high setups costs and source and demand nodes concentrated in different
areas, it is good to build a high capacity path – a highway – from the area of the
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source nodes to the area of the demand nodes. The source and demand nodes are then
connected to the highway using the principles of the previous two items.

• A single loop may be seen as two paths plus a crossover edge (or path). The crossover
must be placed such that demand along either the two upstream or the two downstream
sub-paths are negatively correlated. If no negative correlations are possible, the same
correlations should be as small as possible. This will reduce the overall investments.
The same logic applies if the crossover edge (path) connects two disjoint paths.

Future work. We plan to follow up this work by studying the case of random arc
capacities.
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A Results of the numerical tests

This appendix provides detailed results from the tests in Section 3. Table 2 provides the
numbers used to generate Figure 3, in Section 3.3. The analysis in Section 3.4 is also based
on these computations, but the individual cases cannot be reproduced from these tables.
Tables 3 to 5 present the full computational results for Figure 1, while those of Figure 5 are
found in Tables 6 to 8.

Table 2: The numbers corresponding to Figure 3

Fixed setup cost Variable setup cost

A B C A B C

Minimum value 0.54 0.54 0.91 0.56 0.76 0.96
Geometric mean 0.74 0.74 1.00 0.62 0.95 1.03
Maximum value 0.93 0.93 1.14 0.68 1.09 1.12
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Table 3: Results of Comparison A corresponding to Figure 1, split by correlation structure.

Deterministic solution Stochastic solution

Test Name ρ = 0 ρ > 0 ρ ≷ 0 ρ = 0 ρ > 0 ρ ≷ 0

Germany 01 17165 18525 17504 13410 14838 16038
Germany 02 18077 18749 18047 13774 15728 17210
Germany 04 17372 18048 17711 12182 13569 14822

Molde 01 89318 89814 89844 6968 21110 6794
Molde 02 90920 90791 90831 7470 21767 7032
Molde 04 90746 90618 90657 6987 21248 6769

Montreal r06.1 01 157972 157974 157969 112619 111764 113638
Montreal r06.1 02 147886 147892 147884 102292 104391 102577
Montreal r10.1 01 116165 117029 115614 103571 105251 102774
Montreal r10.1 02 80913 81512 81325 59662 61636 59078
Montreal r10.1 03 92081 92666 92496 71747 73474 71545

Nobel-EU 01 1209410 1332870 1237110 128951 192455 123499
Nobel-EU 02 1269300 1339410 1243730 110903 172271 108688
Nobel-EU 03 1262480 1332590 1236910 100219 163244 97482

NY 01 24860500 26023300 26012800 1851100 3366850 1786500
NY 02 25761800 26256300 26239100 1726640 3423220 1545050
NY 04 24693000 25856600 25846100 1629720 3268480 1553470
US 01 414391 414559 414378 371013 388984 360429
US 02 348460 353104 345384 314188 333334 303797
US 04 394493 400384 390647 354348 373575 345213

Table 4: Results of Comparison B corresponding to Figure 1, split by correlation structure.

Deterministic solution Stochastic solution

Test Name ρ = 0 ρ > 0 ρ ≷ 0 ρ = 0 ρ > 0 ρ ≷ 0

Germany 01 13772 16130 13552 13388 14812 13077
Germany 02 14246 15922 13565 13732 15710 13190
Germany 04 12448 13566 12645 12139 13556 12213

Molde 01 28210 63165 17824 6449 20898 6156
Molde 02 28727 63623 18177 7046 21340 6574
Molde 04 28643 63527 18102 6595 21088 6278

Montreal r06.1 01 118847 121655 116083 101285 105398 95922
Montreal r06.1 02 108009 110727 105391 87818 93341 85182
Montreal r10.1 01 104465 108639 103366 103536 105220 102748
Montreal r10.1 02 62477 66216 60969 59605 61577 59002
Montreal r10.1 03 74936 78331 73921 71676 73418 71505

Nobel-EU 01 163710 517543 117573 122131 189166 116968
Nobel-EU 02 204476 305544 130275 105638 168372 103345
Nobel-EU 03 300252 639796 143485 96720 160822 94153

NY 01 5813210 10931900 5899210 1675610 3281980 1700720
NY 02 3850040 8315310 2995700 1629340 3225060 1501700
NY 04 5586750 10731400 5691810 1516610 3128730 1483130
US 01 379657 389969 373204 369994 388887 360025
US 02 318592 334225 308236 313412 333110 303356
US 04 358255 373970 349697 353351 373159 344944
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Table 5: Results of Comparison C corresponding to Figure 1, split by correlation structure.

Deterministic solution Stochastic solution

Test Name ρ = 0 ρ > 0 ρ ≷ 0 ρ = 0 ρ > 0 ρ ≷ 0

Germany 01 13588 15807 13180 13406 14836 13101
Germany 02 13752 16053 13172 13751 15717 13186
Germany 04 12114 13684 11968 12170 13563 11992

Molde 01 6582 21104 6175 6520 20911 6216
Molde 02 7168 21616 6667 7034 21352 6607
Molde 04 6908 21491 6380 6606 21076 6321

Montreal r06.1 01 97268 102469 94633 97280 102753 94745
Montreal r06.1 02 86172 91202 84293 86232 91237 84299
Montreal r10.1 01 107376 109207 106848 103546 105228 102765
Montreal r10.1 02 64556 66634 64130 59659 61593 59018
Montreal r10.1 03 71833 73624 71604 71718 73431 71534

Nobel-EU 01 124432 191719 117573 125304 190475 116983
Nobel-EU 02 106971 170755 103847 105794 169633 103365
Nobel-EU 03 101393 165388 98930 97405 162022 94310

NY 01 1738870 3326650 1761180 1676470 3286030 1705290
NY 02 1632510 3246760 1534730 1629740 3225230 1501700
NY 04 1524290 3143840 1472440 1521280 3128920 1483130
US 01 377252 401183 366298 370814 388883 360311
US 02 317048 341646 306368 313987 333100 303691
US 04 353590 373386 345223 353987 373186 345195

Table 6: The ratios corresponding to Figure 5 split by correlation structure.

Comparison A Comparison B Comparison C

Test Name gk/Ck ρ=0 ρ>0 ρ≷0 ρ=0 ρ>0 ρ≷0 ρ=0 ρ>0 ρ≷0

Germany 01 0.001 1.32 1.29 1.36 1.04 1.01 1.08 1.01 1.06 1.01
0.05 1.27 1.27 1.33 1.02 1.09 1.03 1.01 1.07 1.01
0.25 1.30 1.25 1.33 1.05 1.06 1.12 1.02 1.03 1.01
0.5 1.33 1.29 1.35 1.07 1.07 1.15 1.00 1.00 1.00

0.999 1.40 1.35 1.39 1.03 1.01 1.00 1.00 1.00 1.00

Germany 02 0.001 1.37 1.23 1.42 1.07 1.02 1.09 1.00 1.03 1.00
0.05 1.32 1.20 1.36 1.03 1.01 1.03 1.00 1.03 1.00
0.25 1.31 1.24 1.38 1.01 1.04 1.05 1.00 1.01 1.00
0.5 1.31 1.26 1.34 1.03 1.06 1.09 1.01 1.03 1.01

0.999 1.37 1.33 1.37 1.03 1.01 1.00 1.00 1.00 1.00

Germany 04 0.001 1.47 1.36 1.49 1.05 1.01 1.07 1.00 1.01 1.00
0.05 1.39 1.34 1.45 1.05 1.11 1.11 1.00 1.02 1.00
0.25 1.39 1.34 1.43 1.04 1.10 1.07 1.01 1.03 1.01
0.5 1.40 1.35 1.44 1.02 1.09 1.05 1.02 1.04 1.03

0.999 1.45 1.38 1.45 1.03 1.01 1.00 1.00 1.00 1.00
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Table 7: Ratios corresponding to Figure 5 split by correlation structure, cont. The aster-
isk (*) denotes cases where the solver did not finished within 15 days.

Comparison A Comparison B Comparison C

Test Name gk/Ck ρ=0 ρ>0 ρ≷0 ρ=0 ρ>0 ρ≷0 ρ=0 ρ>0 ρ≷0

Molde 01 0.001 16.10 4.57 16.11 2.19 2.01 3.71 1.04 1.01 1.01
0.05 13.69 4.41 14.38 2.53 1.11 1.79 1.02 1.01 1.01
0.25 12.04 4.25 12.06 4.16 1.40 3.00 1.01 1.00 1.00
0.5 10.45 4.04 10.55 3.66 1.35 2.67 1.01 1.00 1.00

0.999 8.52 3.72 9.14 3.05 1.27 2.37 1.00 1.00 1.02

Molde 02 0.001 14.96 4.50 15.10 3.16 3.18 4.77 1.05 1.02 1.02
0.05 13.67 4.40 14.03 2.84 3.10 4.44 1.03 1.02 1.02
0.25 11.49 4.19 11.90 2.45 2.96 3.82 1.03 1.02 1.03
0.5 9.22 3.91 9.64 1.93 1.33 1.86 1.02 1.00 1.04

0.999 8.02 * * 3.02 * * 1.00 * *

Molde 04 0.001 15.92 4.55 15.87 3.27 3.20 5.01 1.08 1.03 1.02
0.05 14.60 4.46 14.57 3.03 3.14 4.62 1.07 1.03 1.03
0.25 11.84 4.20 11.93 4.13 1.39 3.01 1.02 1.00 1.04
0.5 10.15 3.99 10.44 3.59 1.34 2.68 1.02 1.00 1.05

0.999 8.17 3.68 8.05 2.30 1.33 2.41 1.03 1.01 1.04

Montreal r06.1 01 0.001 1.40 1.36 1.43 1.05 1.05 1.02 1.00 1.00 1.00
0.05 1.39 1.36 1.43 1.04 1.04 1.01 1.00 1.00 1.00
0.25 1.39 1.35 1.42 1.03 1.03 1.01 1.00 1.00 1.00
0.5 1.38 1.34 1.42 1.02 1.03 1.00 1.00 1.00 1.00

0.999 1.38 1.34 1.44 1.01 1.02 1.00 1.00 1.00 1.00

Montreal r06.1 02 0.001 1.50 1.46 1.53 1.06 1.06 1.02 1.00 1.00 1.00
0.05 1.50 1.45 1.53 1.05 1.06 1.02 1.00 1.00 1.00
0.25 1.49 1.45 1.52 1.04 1.05 1.01 1.00 1.00 1.00
0.5 1.48 1.44 1.52 1.03 1.04 1.00 1.00 1.00 1.00

0.999 1.48 1.43 1.53 1.02 1.03 1.00 1.00 1.00 1.00

Montreal r10.1 01 0.001 1.14 1.13 1.14 1.03 1.05 1.02 1.00 1.00 1.00
0.05 1.13 1.12 1.13 1.02 1.03 1.01 1.00 1.00 1.00
0.25 1.13 1.12 1.13 1.02 1.02 1.00 1.00 1.00 1.00
0.5 1.13 1.12 1.14 1.02 1.02 1.00 1.00 1.01 1.00

0.999 1.15 1.14 1.15 1.01 1.01 1.00 1.00 1.00 1.00

Montreal r10.1 02 0.001 1.35 1.32 1.36 1.08 1.10 1.06 1.00 1.00 1.00
0.05 1.34 1.31 1.36 1.03 1.03 1.02 1.00 1.00 1.00
0.25 1.33 1.30 1.35 1.02 1.02 1.01 1.00 1.00 1.00
0.5 1.33 1.30 1.35 1.01 1.02 1.00 1.00 1.00 1.00

0.999 1.34 1.31 1.36 1.00 1.01 1.00 1.00 1.00 1.00

Montreal r10.1 03 0.001 1.33 1.30 1.33 1.02 1.02 1.01 1.00 1.00 1.00
0.05 1.33 1.30 1.33 1.03 1.02 1.03 1.00 1.00 1.00
0.25 1.32 1.29 1.32 1.03 1.03 1.03 1.00 1.00 1.00
0.5 1.31 1.29 1.31 1.02 1.03 1.02 1.00 1.00 1.00

0.999 1.31 1.29 1.31 1.02 1.02 1.01 1.00 1.00 1.00

Nobel-EU 01 0.001 12.50 9.02 14.59 1.21 1.51 1.36 1.02 1.01 1.01
0.05 11.24 8.58 13.58 1.16 1.26 1.11 1.02 1.01 1.00
0.25 9.89 7.88 11.04 1.35 3.22 1.00 1.02 1.02 1.00
0.5 8.58 7.43 10.12 4.28 6.81 3.00 1.03 1.02 1.07

0.999 7.61 6.81 9.11 3.80 6.23 2.74 1.01 1.00 1.11
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Table 8: The remaining ratios corresponding to Figure 5 split by correlation structure

Comparison A Comparison B Comparison C

Test Name gk/Ck ρ=0 ρ>0 ρ≷0 ρ=0 ρ>0 ρ≷0 ρ=0 ρ>0 ρ≷0

Nobel-EU 02 0.001 16.17 10.45 16.01 3.70 4.95 4.99 1.02 1.01 1.01
0.05 14.74 10.03 14.85 3.06 4.20 1.50 1.01 1.00 1.00
0.25 12.52 9.13 12.87 2.55 2.40 1.39 1.02 1.01 1.00
0.5 10.83 8.33 11.58 2.24 2.21 1.30 1.00 1.00 1.00

0.999 9.34 7.51 9.89 1.98 2.03 1.18 1.00 1.00 1.00

Nobel-EU 03 0.001 16.68 10.78 16.95 4.41 5.59 6.19 1.01 1.01 1.01
0.05 15.68 10.41 15.96 3.19 4.32 1.56 1.00 1.00 1.02
0.25 13.35 9.52 13.90 2.66 2.46 1.43 1.04 1.02 1.02
0.5 11.65 8.74 12.28 2.35 2.28 1.31 1.03 1.02 1.01

0.999 9.82 7.72 10.27 2.04 2.06 1.17 1.00 1.01 1.01

NY 01 0.001 22.52 8.73 23.11 5.17 3.65 5.24 1.03 1.01 1.01
0.05 20.55 8.45 21.39 4.74 3.54 4.86 1.03 1.01 1.01
0.25 17.71 7.97 17.91 4.13 3.36 4.13 1.03 1.02 1.03
0.5 14.97 7.46 16.11 6.02 3.70 7.95 1.00 1.00 1.01

0.999 12.58 6.77 14.13 5.22 3.41 7.08 1.02 1.01 1.02

NY 02 0.001 25.80 9.14 25.09 4.73 4.46 1.67 1.05 1.02 1.00
0.05 23.63 8.88 23.11 6.96 4.55 2.98 1.06 1.02 1.01
0.25 18.79 8.21 20.10 4.81 2.70 3.04 1.03 1.01 1.01
0.5 16.44 7.66 17.71 2.63 2.66 2.19 1.01 1.01 1.03

0.999 14.12 7.02 15.10 5.53 3.48 7.47 1.01 1.00 1.02

NY 04 0.001 27.91 9.34 26.74 5.95 3.81 5.66 1.02 1.01 1.03
0.05 25.38 9.07 24.78 5.43 3.71 5.26 1.01 1.00 1.02
0.25 20.58 8.38 20.73 4.55 3.50 4.69 1.03 1.01 1.05
0.5 17.75 7.82 18.24 3.98 3.29 4.18 1.00 1.00 1.03

0.999 14.73 7.10 15.61 3.55 3.04 3.69 1.00 1.00 1.00

US 01 0.001 1.12 1.06 1.15 1.03 1.00 1.03 1.02 1.03 1.02
0.05 1.09 1.06 1.13 1.01 1.00 1.02 1.00 1.00 1.00
0.25 1.08 1.06 1.11 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.09 1.07 1.12 1.00 1.00 1.00 1.00 1.00 1.00

0.999 1.15 1.11 1.16 1.03 1.02 1.07 1.03 1.02 1.07

US 02 0.001 1.11 1.05 1.14 1.02 1.00 1.01 1.01 1.02 1.01
0.05 1.11 1.07 1.13 1.02 1.01 1.01 1.01 1.03 1.01
0.25 1.10 1.07 1.13 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.11 1.07 1.13 1.00 1.00 1.00 1.00 1.00 1.00

0.999 1.14 1.10 1.17 1.00 1.00 1.00 1.00 1.00 1.00

US 04 0.001 1.11 1.07 1.13 1.02 1.00 1.01 1.00 1.00 1.00
0.05 1.08 1.07 1.11 1.00 1.00 1.00 1.00 1.00 1.00
0.25 1.09 1.07 1.12 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.12 1.08 1.15 1.02 1.00 1.04 1.02 1.00 1.02

0.999 1.16 1.13 1.18 1.00 1.00 1.00 1.00 1.00 1.00
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