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This paper shows how to implement long-term storage in the multi-horizon
modelling paradigm, expanding the range of problems this approach is appli-
cable to. The presented implementation is based on the HyOpt optimization
model, but the ideas should be transferable also to other models implement-
ing the multi-horizon approach.

We illustrate the effects of several different formulations on a simple case of
electrifying an offshore installation using wind turbines and a hydrogen-based
energy-storage system. The results show that the formulations provide rea-
sonable modelling of the storage capacity, without sacrificing the advantages
of the multi-horizon approach.

Multi-horizon stochastic programming (Kaut et al., 2019), is a modelling paradigm
that enables the combination of several time scales in a single optimization model. Typ-
ically, this means a combination of long-term (strategic) decisions with a short-term
(tactical or operational) model, used to evaluate the quality of the strategic decisions.
For example, we want to build a new infrastructure (strategic time scale), which requires
modelling its performance under varying operational conditions (operational time scale).
An example of a multi-horizon scenario tree is in Fig. 1, where ‘ ’ denotes a strategic
node, where strategic decisions are made. Each strategic node includes four operational
scenarios, i.e., sequences of operational nodes, denoted by ‘ ’.

The main advantage of this approach is that it drastically reduces the size of the
problem, especially if the operational scenarios are significantly shorter than the strategic
periods. For instance, we can use a set of representative weeks or even days to represent
strategic periods spanning several years.

The price we pay for this simplification is that there is no link between operational
scenarios in consecutive strategic periods, as seen in Fig. 1. Consequently, the approach
does not seemingly allow modelling of storages spanning multiples strategic periods.
Strømholm and Rolfsen (2021) partially addressed this issue by providing formulas for
the inventory level at the end of strategic periods, but their approach does not consider
how this affects the required storage capacities.
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Figure 1: Scenario tree with two strategic periods and four operational scenarios in
each strategic node.

In this paper, we build upon Strømholm and Rolfsen (2021) and show how to approxi-
mate storage capacities and inventory levels for different types of storages and scenarios.
For this, we use the HyOpt optimization model developed at SINTEF (Kaut et al.,
2019). HyOpt is limited to two-horizon trees, so we will from now on limit the presen-
tation to this. More precisely, we assume scenario trees with structure as in Fig. 1, i.e.,
a tree consisting of strategic-decisions nodes, each with an attached set of operational
scenarios. However, most of the presented logic should generalize to multi-horizon trees
as well.

In the rest of the paper, we first present the most important parts of the HyOpt
model in Section 1, before we proceed to the storage modelling in Section 2. Finally, we
illustrate and test the presented approach in Section 3.

1 Relevant aspects of the HyOpt model
In this section, we present parts of the HyOpt model relevant to our paper. For the
complete model formulation, see Kaut et al. (2019).

1.1 Notation
Indices
sn strategic node, i.e., one node of the strategic scenario tree
sc operational scenario
op operational period

Parameters
W SC

sn,sc weight of oper. scenario sc in strategic node sn
T M

sn,sc time-scaling multiplier for scenario sc in strat. node sn
MSC

sn,sc overall multiplier for scenario sc in strat. node sn
∆T SP

sn duration of strategic period in strat. node sn
∆T SC

sc duration of operational scenario sc
∆T OP

sc,op duration of oper. period op in operational scenario sc

2



Table 1: Weights and multipliers of 3 operational scenarios. Here, ∆T d
sc is the du-

ration of oper. scenario sc in days, and the last column shows how many
days each scenario represents: days = ∆T SC,d

sc × MSC
sn,sc.

oper. sc. W SC
sn,sc ∆T d

sc T M
sn,sc MSC

sn,sc days
scen. 1 182/365 7 365/7 26 182
scen. 2 182/365 7 365/7 26 182
scen. 3 1/365 1 365 1 1
sum 1.0 365

1.2 Scenario-tree structure in HyOpt
In HyOpt, the strategic scenario tree consists of strategic nodes, each belonging to one
strategic period. A strategic scenario is a path from the root of the strategic tree to one
of the leaves.

Each of the strategic nodes has one or more operational scenarios attached to it. These
scenarios can have different length and time resolution. Each scenario has also assigned
weight W SC

sn,sc, denoting the time spent in the scenario as a fraction of the strategic period
– implying ∑

sc W SC
sn,sc = 1 for all strategic nodes sn.

If the duration of an operational scenario does not equal the duration of the strategic
period of the node it is attached to, we have to scale all effects of the scenario using a
multiplier

MSC
sn,sc = W SC

sn,sc × T M
sn,sc (1)

where
T M

sn,sc = ∆T SP
sn /∆T SC

sc (2)

For example, Table 1 shows a situation where a strat. node in a 1-year strat. period
has 3 operational scenarios, two weekly for normal situations and one daily representing
an extreme day.

There, the last column shows how may days of the year are represented by each
scenario. The table also shows that the weights are not the same as probabilities if
the scenarios have different lengths: since the extreme day happens (on average) once
per year while each of the normal scenarios happens 26 times, the probability of the
scenarios happening are 1/53 and 26/53, respectively.

2 Storage handling
This section presents formulas for handling of storages in the HyOpt model. In partic-
ular, we demonstrate how to adjust the storage capacity, dependent on the duration of
the operational scenarios and the time-scale of the storages. We also introduce a new
notion of scenario clusters and show how this affects the presented formulas.
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2.1 Relevant notation
Indices i storage node, i.e., node in the network modelling the system

Variables

invi,sn,sc,op inventory level of storage i at the end of oper. period (sn, sc, op)
invinit

i,sn,sc inventory level at the start of oper. scenario (sn, sc)
invend

i,sn,sc inventory level at the end of oper. scenario (sn, sc)
invinit

i,sn initial inventory level of storage i at strat. node sn

invend
i,sn final inventory level of storage i at strat. node sn

All the inventory variables are non-negative and limited by caps,sn, the capacity available
at strat. node sn:

0 ≤ invi,sn,sc,op ≤ caps,sn , (3)
and correspondingly for the other variables.

2.2 Scaling storages from operational scenarios
While scaling with MSC

sn,sc works for costs, storage handling requires extra attention.
There are (at least) two issues that have to be addressed: inventory level at the end of a
strategic period, and the minimal storage capacity required for the presented scenarios.

If we denote by inv∆
i,sn,sc the change of the inventory during oper. scenario sc,

inv∆
i,sn,sc = invend

i,sn,sc − invinit
i,sn,sc ,

then the overall change in the inventory at strategic node sn is

inv∆
i,sn =

∑
sc

MSC
sn,sc × inv∆

i,sn,sc .

If we further assume that all operational scenarios start with the same inventory level,

invinit
i,sn,sc = invinit

i,sn ,

then the final inventory is given by (Strømholm and Rolfsen, 2021)

invend
i,sn = invinit

i,sn + inv∆
i,sn . (4)

The above requirement that all operational scenarios within one strategic node start
with the same inventory level corresponds to an interpretation of operational scenarios
as a list of possibilities that occur randomly: since we do not know which scenarios will
happen, we cannot adjust inventory levels in preparation for them.

This requirement has the additional benefit of aiding in the dimensioning of storage.
To understand why, let us consider again the three scenarios from Table 1 and assume
that the inventory changes of storage i in the three scenarios are (10, -9, -25), respectively.
As long as there is a cost associated with the installed storage capacity, and assuming
no additional constraints, the model will select the minimal capacity that can satisfy
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Figure 2: Storage level changes with common starting point

Eq. (3) in all scenarios. In our case, this results in the inventory levels presented in
Fig. 2, requiring storage capacity of 351.

However, it is important to realize that this storage capacity is an underestimate.
Since both ‘normal’ scenarios (scen. 1 and scen. 2) occur 26 times during the strategic
period, we can expect to see them happening multiple times in a row, assuming they
occur randomly. This increases the required capacity significantly.

For example, if we start with two consecutive occurrences of scen. 1, we end up with
an inventory level of 25 + 2 × 10 = 45, requiring capi,sn ≥ 45. At the same time, a
single occurrence of scen. 2 preceded or followed by scen. 3 would result in an infeasible
inventory level 25 − 25 − 9 = −9. To avoid the infeasibility, the initial inventory level
would have to increase to 25+9 = 34, requiring capi,sn ≥44 . . . and capi,sn ≥45+9 = 54 if
we wanted to consider the first sequence as well. In both cases, allowing more repetitions
would increase the required capacity even further.

On the other hand, if we for some reason knew that the two normal scenarios alternate,
then none of the repetitions could happen and capi,sn =44 would be sufficient to cover all
allowed permutations. This shows that the magnitude of the capacity underestimation
is necessarily case-dependent.

2.3 Operational scenarios in sequence
In the preceding sections, operational scenarios were assumed to occur randomly. How-
ever, this assumption does not hold when the scenarios represent events that occur in
sequence, such as seasons within a year. This is a common approach in long-term models,
as demonstrated in Skar et al. (2016) or Strømholm and Rolfsen (2021).

In such cases, we do not expect the scenarios to occur randomly throughout the
strategic period. Instead, if we have one scenario per season, its probability is 100%
during that season and 0% elsewhere. It follows that the scenarios occur multiple times
in a row – 13 times in case of weekly scenarios representing seasons. This has a significant
impact on the required storage capacity.

1Note that this assumes that the inventory levels change monotonously from the start to the end of
each operational period, which is normally not the case. We will address this issue later.
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Table 2: Weights and multipliers of 5 operational scenarios. Again, ∆T d
sc is the du-

ration of oper. scenario sc in days and column ‘days’ shows how many days
each scenario represents. In addition, the last column shows the inventory
changes scaled to the whole strategic period, inv∆SP

i,sn,sc = T M
sn,sc × inv∆

i,sn,sc.

oper. sc. W SC
sn,sc ∆T d

sc T M
sn,sc MSC

sn,sc days inv∆
i,sn,sc inv∆SP

i,sn,sc

winter 91/365 7 365/7 13 91 -10 -130
spring 91/365 7 365/7 13 91 15 195
summer 91/365 7 365/7 13 91 -5 -65
autumn 91/365 7 365/7 13 91 0 0
bad day 1/365 1 365 1 1 -5 -5
sum 1.0 365 -5
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Figure 3: Storage level changes with oper. scenarios from Table 2 interpreted as
random events
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Figure 4: Storage level changes with oper. scenarios from Table 2, interpreted as
four seasons in sequence with the ‘bad day’ scenario assigned to spring.
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To illustrate this, consider scenarios from Table 2. If we treat them as random events,
then the overall storage change is -5, and the required capacity is 25, as shown in Fig. 3.
To let the scenarios represent the sequence of seasons instead, we first have to decide
what to the with the ‘bad day’ scenario. We have assigned it to spring, which is therefore
represented by two scenarios and its overall inventory change is 190. The inventory-level
changes for each scenario are shown in the last column of Table 2 and the whole annual
profile in Fig. 4. The figure shows that the minimal storage capacity required in this
case is 195 – almost eight times more than in the original approach. Note that the total
inventory-level change is not affected by the grouping and remains at −5.

2.3.1 Extra model notation

To implement the scenario groups in the model, we need to introduce extra notation:

Parameters and sets

GSC
sn ordered list of scenario groups at strategic node sn

SG
sn,g set of operational scenarios in group g ∈ GSC

sn

∆T G
sn,g duration of scenario group g ∈ GSC

sn

W SC,G
sn,g,sc relative weight of scenario sc within scen. group g ∈ GSC

sn

T M,G
sn,g,sc time scaling factor for scenario sc within scen. group g ∈ GSC

sn

MSC,G
sn,g,sc multiplier for scenario sc within scen. group g ∈ GSC

sn

gfirst
sn first scen. group in strat. node sn

glast
sn last scen. group in strat. node sn

Variables invG,init
i,sn,g inventory level at the start of scenario group g ∈ GSC

sn

invG,end
i,sn,g inventory level at the end of scenario group g ∈ GSC

sn

The inventory-level variables are again non-negative and limited by capi,sn. In addition,
the new entities are connected by the following relations:

W SC,G
sn,g,sc = W SC

sn,sc /
∑
s̃c∈g

W SC
sn,s̃c

T M,G
sn,g,sc = ∆T G

sn,g/∆T OP
sc,op

MSC,G
sn,g,sc = W SC

sn,sc × T M,G
sn,g,sc

invG,init
i,sn,gfirst

sn
= invinit

i,sn

invinit
i,sn,sc = invG,init

i,sn,g

invG,end
i,sn,g = invG,init

i,sn,g +
∑

sc∈SG
sn,gg

MSC,G
sn,g,sc × inv∆

i,sn,sc

invG,init
i,sn,g = invG,end

i,sn,g−1 if g − 1 ∈ GSC
sn else invinit

i,sn,sn

invend
i,sn = invG,end

i,sn,glast
sn
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Table 3: Alternative scenarios for the summer group. Analogously to Table 2,
inv∆G

i,sn,g,sc = T M,G
sn,g,sc × inv∆

i,sn,sc is the inventory-level change during the
scenario, scaled to the duration of the group. The last column shows the
maximum inventory level reached within each oper. scenario, relative to its
starting level, invmax ∆

i,sn,sc = maxop invi,sn,sc,op − invinit
i,sn,sc.

oper. scen. W SC
sn,sc W SC,G

sn,g,sc T M,G
sn,g,sc MSC,G

sn,g,sc inv∆
i,sn,sc inv∆G

i,sn,g,sc invmax ∆
i,sn,sc

summer-1 42/365 6/13 13 6 5 30 10
summer-2 42/365 6/13 13 6 −12 −72 0
summer-3 7/365 1/13 13 1 −23 −23 0

where g ∈ GSC
sn and sc ∈ SG

sn,gg in all constraints where they appear. Since we treat
scenarios within each group as random events, we force them to start from a common
initial level. The last constraints ensures that the installed capacity is big enough to
handle also the final inventory levels in the sequence.

2.3.2 Repeated scenarios

Now consider what would happen if we replaced the current summer scenario by the
three weekly scenarios presented in Table 3. There, the last column shows the maximum
inventory level during the scenario, relative to the start of the scenario: it means that
inventory in scenario ‘summer-1’ first increases by 10 units and then drops, so the overall
change is +5 units.

Since 30 − 72 − 23 = 65, the total inventory change during summer is unchanged, so
the overall inventory profile would remain the same as in Fig. 4 – except that scenario
‘summer-1’ would increase the required storage capacity from 195 to 205, to handle the
maximum level attained during the scenario.

But what if this scenario repeated two or more times in row? This would require
even higher capacity. This means that we have to decide how many repetitions do
we want to take into account. The maximum number of repetitions is MSC,G

sn,g,sc; for
‘summer-1’, this means 6 occurrences in a row – but this happens with probability of
only (W SC,G

sn,g,sc)6 = (6/13)6 = 0.97%, so considering it might be too conservative. Instead,
we have chosen to set a limit on the probability we want to consider, denoted by P R.
This limits the number of consecutive occurrences to

seqG
sn,g,sc = ⌊ln(P R)/ ln(Wsn,s/W g

sn,g)⌋ , (5)

bounded by 1 from below and MSC
sn,sc from above.

In our case, we use P R = 5%. For ‘summer-1’, this means considering only seqG
sn,g,sc =

⌊ln(0.05)/ ln(6/13)⌋ = 3 occurrences. In the initial one, the inventory level goes from
195 to 200, with a maximum at 205. The first repetition starts with inventory level
of 195 + 5 = 200 and the second with 195 + 2 × 5 = 205, with a maximum reaching
205 + 2 × 5 = 215. This would thus become the new required capacity.
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To add this capacity requirement to the model, we just need to handle the last repeti-
tion, since the inventory levels change linearly throughout the sequence and the initial
occurrence is already considered in the model and therefore satisfies Eq. (3). The last
occurrence has inventory levels shifted by (seqG

sn,g,sc −1) inv∆
i,sn,sc, so its version of Eq. (3)

is
0 ≤ invi,sn,sc,op + (seqG

sn,g,sc − 1) inv∆
i,sn,sc ≤ capi,sn , (6)

for all operational scenarios sc with seqG
sn,g,sc > 1.

2.3.3 Multi-year scenarios

Until now, we have implicitly assumed annual strategic periods where the sequence of
scenario groups (seasons) covers the whole strategic period. If the duration increases to
two years, then the overall storage-level change doubles to −10 (−5 each year), but this
is clearly not the case for the inventory levels. Indeed, if the overall storage-level change
were zero, then the second year would be a copy of the first, and the required storage
capacity would not change at all.

This can be addressed analogously to the scenario repetition, using

0 ≤ invi,sn,sc,op + (⌊(∆T SP
sn /

∑
g∈GSC

sn

∆T G
sn,g⌋ − 1) inv∆G

i,sn ≤ capi,sn , (7)

where inv∆G
i,sn is the total inventory-level change in all the scenario groups,

inv∆G
i,sn =

∑
g∈GSC

sn

∑
sc∈SG

sn,g

inv∆G
i,sn,g,sc .

We also need constraints that combine Eqs. (6) and (7), to accommodate repeated
scenarios within repeated scenarios groups:

0 ≤ invi,sn,sc,op + (seqG
sn,g,sc − 1) inv∆

i,sn,sc + (⌊∆T SP
sn /∆T G

sn,g⌋ − 1) inv∆
i,sn ≤ capi,sn (8)

Note that Eq. (8) alone is insufficient, and we require all Eqs. (6) to (8). To illustrate this,
let us assume that we had a scenario with a storage-level change of 10 and seqG

sn,g,sc =4,
in a two-year strategic period with an overall inventory-level change of −30. Then

(seqG
sn,g,sc − 1) inv∆

i,sn,sc + (⌊∆T SP
sn /∆T G

sn,g⌋ − 1) inv∆
i,sn = 3 × 10 + 1 × −30 = 0 ,

so Eq. (8) would not have any effect, but Eqs. (6) and (7) would still be needed.

2.4 Initial and final inventory levels
Without any limitations on initial and final inventory levels, the model will likely choose
to start each operational scenario with full storage and end it with an empty one, ef-
fectively obtaining full storage for free. There are two common approaches to address
this issue: assigning a value to the inventory or requiring that the storage ends with the
same level as it started. In HyOpt, we use the latter approach with several time scopes
for the storage-level looping, to distinguish between short- and long-term storages:
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Figure 5: HyOpt representation of of the test case from Section 3. Red arrows
represent flow of power, green arrows flow of hydrogen. Nodes whose
capacity is being optimized are denoted by solid-line borders.

oper-scenario, where we require that the inventory level loops back in every opera-
tional scenario, i.e., inv∆

i,sn,sc = 0. This is typically used for batteries, where each
scenario constitutes a daily or weekly ‘schedule’ with charging overnight.

scen-group, where we require that the inventory level loops back within each scenario
group, i.e., inv∆G

i,sn,g = 0. If the scenario groups represent seasons, this would fit
storages that cycle in weeks or a few months, such as medium-size hydrogen-storage
systems or smaller hydro reservoirs.

strat-node, where we require that the inventory-level at the end of a strategic node
is equal to the initial level, i.e., inv∆

i,sn = 0. With yearly strategic time periods,
this corresponds to inter-seasonal storage like large hydrogen storage or mid-sized
hydro reservoirs.

overall, where we require that the final inventory level at the end of all strategic nodes
in the last strat. periods finish on a level that is equal to the initial level in the
first strat. period. This corresponds to large hydro reservoirs.

Note that a storage node with scope ‘strat-node’ or shorter would not, by definition,
need Eqs. (7) and (8) and with ‘oper-scenario’ scope would not need Eq. (6) either.

3 Test case
We consider a simple case inspired by the LowEmission project2, involving electrification
of an offshore installation using wind turbines combined with energy storage, in our case
a hydrogen-base system consisting of an electrolyzer, hydrogen tank, and fuel cells. In

2See https://www.sintef.no/projectweb/lowemission/
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Table 4: Model time structures considered in the test case. T hor,y is the overall time
horizon, in years, |T SP| is the number of strategic periods, and ∆T SP,y

sn

shows the duration of the strat. periods, in years.

struct. T hor,y |T SP| ∆T SP,y
sn wind-data year

1 × 1 1 1 1 2018
1 × 5 5 1 5 2018–2022
5 × 1 5 5 (1, 1, 1, 1, 1) 2018–2022

HyOpt, this gives a network structure as in Fig. 5, with ‘switch board’ nodes added for
modelling convenience.

The wind-production data are based on actual wind-speed measurements from the
Ekofisk field in the North Sea, covering the period from 2018 to 2022. These measure-
ments are converted to wind-production capacity factor using a production profile for
Vestas V164/8000 wind turbine, obtained from the Open Energy Platform3. We assume
a fixed power load of 20 MW. All costs and performance data are taken from the open
HyOpt test case available at https://gitlab.sintef.no/open-hyopt/test-case-1.

3.1 Case variants
We test the model with three time structures, 1×1, 1×5, and 5×1, presented in Table 4.
They all use hourly time resolution. We use astronomical definitions of seasons, where
each season covers three months and winter starts on December 1. Consequently, our
‘year’ goes from December to November in order to make it a sequence of four complete
seasons. In other words, when we say, for example, 2018, the actual interval is 2017-12-01
to 2018-11-30.
For each time structure, we test the effect of the following operational variants:

full, with one operational scenario per strat. period, covering the full length of the
period.

mean, with four operational scenarios per strat. period, with length of one week.
Each scenario represents one season and is selected as the week in the data with
its average capacity factor closest to the average for the season (in the given time
interval).

mean+min, with eight operational scenarios per strat. period, with length of one
week. For each season, we select the week with the smallest above-average capacity
factor, and the week with the smallest capacity factor as the worst case. The
scenario weights are selected so that the weighted average is equal to the average
capacity factor of the season.

Note that this simple selection approach is applicable only to one-dimensional ran-
domness (in our case, the wind-production capacity factor). With multidimensional

3See https://openenergy-platform.org/.
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Table 5: Number of weeks in operational scenarios and the size reduction compared
to the full model, for the tested time structures and model variants

1 × 1 1 × 5 5 × 1
case variant weeks reduct. weeks reduct. weeks reduct.

full 52 − 260 − 260 −
mean 4 13 4 65 20 13

mean+min 8 6.5 8 32.5 40 6.5

randomness, or a need for more scenarios, a different approach would be needed. A
popular option is to use some clustering approach, for example k-medoids (Kaufman
and Rousseeuw, 1990, Chapter 2) – a method similar to k-means, but using actual data
points as cluster centres. For more methods see, for example, Bounitsis et al. (2022) or
Kaut (2021).
Moreover, we use two versions of the multi-scenario variants:

fan, where all scenarios are interpreted as random events, so we have a single ‘fan’ of
scenarios.

groups, with scenarios grouped by season.

The scenario-tree sizes of the variants are summarized in Table 5. There, we can see
that the size reduction from using the weekly scenarios varies from 6.5 times to 32.5
times, compared to the case with a full time sequence.

3.2 Results
All test variants we solved using FICO™ Xpress Solver v 8.14, on a laptop with Intel®
Core™ i7-7600U CPU at 2.80 GHz and 16 GB of RAM. Results for the one-year case are
shown in Figs. 6 to 8. The left panel show that the solution times of the scenario-based
versions are significantly smaller than the ‘full’ model, with a speed-up matching the
problem-size reduction presented in Table 5. In particular, the speed-up ranges from
5–6 in the worst case of variant ‘5 × 1’ to over 100 for ‘1 × 5’.

Regarding the objective function, i.e., the total costs, we can make the following
observations:

• ‘mean+min’ variants are more costly than ‘mean’. This is natural, as they have to
take into account the extreme scenarios.

• ‘groups’ variants are more costly than ‘fan’. This shows that the dynamics in-
troduced by the grouping works, forcing the model to tackle multiple consequent
occurrences of scenarios representing one season.

• the ‘mean+min_groups’ variants can be more costly than ‘full’. This could be
because the scenario variants force the model to handle both the ‘min’ scenario
and multiple occurrences of the ‘mean’ scenarios at the same time (at the start of
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Figure 6: Results for time struct. ‘1 × 1’: one strat. period one year long
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Figure 7: Results for time struct. ‘1 × 5’: one strat. period 5 years long
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Figure 8: Results for time struct. ‘5 × 1’: 5 yearly strat. periods

each season), while the actual sequence in the ‘full’ variant might turn out to be
easier to handle.

The last point is important: Eq. (6) forces the model to take into account multiple
repetitions of the involved scenarios, up to the specified probability. Therefore, the
scenarios are designed to make the model tackle many different permutations of the
involved scenarios. The ‘full’ variant, on the other hand, allows the model to adapt
to the one scenario (historical data) included in the tree. Consequently, the scenario
selection might produce more expensive solutions.

Note that it does not mean that scenarios produce better solutions. Consider, for
example, a 12-week season represented by 2 weekly scenarios with equal weight, where
the inventory level increases by 10 in the first scenario and decreases by 10 in the second
one. With 5% limit on scenario repetitions, we get reps,sn,g = 4, so the model will have to
tackle 4 consequent occurrences of either scenarios. This will force the storage capacity
to be at least 80, to allow the inventory to go both 40 units up and 40 down, assuming it
starts at 40. If the two scenarios in reality tend to alternate and never occur more than
twice in a row, the actual storage-capacity requirement would be lower and so would be
the total costs.

The right panels of Figs. 6 to 8 show where the costs come from. We can see that
increased wind variability is being addressed by a combination of increased hydrogen
storage and increased wind-production capacity. Specifically, in ‘1 × 1’, the most expen-
sive variant is the one with largest storage, while in ‘1 × 5’ and ‘5 × 1’ it is the one with
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the largest wind park. This interplay between the two components makes it difficult to
draw conclusions about the effects of the scenario structure on either of them alone. This
is a well-known feature of stochastic-programming models, where the objective functions
tend to be rather flat, with several different strategies having close to optimal objective
value.

4 Conclusions
This paper presents a way to model long-term storages within the multi-horizon mod-
elling paradigm. This removes one of the major obstacles for using this modelling ap-
proach and makes it applicable to a wider selection of problems.

The presented formulation is implemented in the HyOpt optimization model, freely
available at https://gitlab.sintef.no/open-hyopt/. The test case from Section 3 is
available at https://gitlab.sintef.no/open-hyopt/test-case-2 and includes scripts
for solving it using PyHyOpt, a python interface to HyOpt, also available from the Hy-
Opt page.
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