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This paper introduces a method for incorporating long-term storage into
the multi-horizon modelling paradigm, thereby expanding the scope of prob-
lems that this approach can address. The implementation presented here is
based on the HyOpt optimization model, but the underlying concepts are
designed to be adaptable to other models that utilize the multi-horizon ap-
proach.

We demonstrate the effects of several formulations on a case study that ex-
plores the electrification of an offshore installation using wind turbines and a
hydrogen-based energy storage system. The findings suggest that the formu-
lations offer a realistic modelling of storage capacity, without compromising
the advantages of the multi-horizon approach.

Multi-horizon stochastic programming (Kaut et al., 2019) is a modelling framework for
reducing size of optimization models with several time scales, typically a combination
of strategic (long-term) and operational (short-term) decisions. It works by decoupling
the strategic and operational decisions, as described in the next section. This allows
for a significant reduction in the size of the generated models and consequently in the
required solution time.

The trade-off for this simplification is that the decoupling prevents accurate modelling
of long-term storages, such as hydropower with multi-year reservoirs. In this paper, we
present formulas for approximation of inventory levels and required storage capacities,
for several types of storages and model structures. This is expected to broaden the range
of models to which the multi-horizon approach can be applied.

The remainder of the paper is structured as follows: We start by outlining the main
aspects of the multi-horizon modelling approach in Section 1 and introducing the relevant
components of our ‘base’ optimization model in Section 2. Following this, we describe
how to add long-term storage to the model in Section 3 and demonstrate the proposed
approach on a test case in Section 4.
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Figure 1: Structure of a simple model with two strategic-decision nodes.

(a) Standard scenario tree (b) Multi-horizon scenario tree

Figure 2: Scenario tree with two strategic periods and four operational scenarios
in each strategic node. Note that in the multi-horizon tree, the second
strategic node is connected to the first strategic node, instead of the pre-
ceding operational nodes.

1. Multi-horizon modelling
To understand the concept of the multi-horizon approach, consider an optimization
model for designing an energy infrastructure with the objective to minimize the overall
costs while meeting a specified energy demand. This necessitates the use of two types of
variables in the models: strategic decisions related to the infrastructure and operational
decisions concerning its usage, potentially under different scenarios. We assume that
the strategic decisions occur infrequently and refer to the time intervals between them
as strategic periods, typically measured in months or years. Conversely, the frequency of
the operational decisions must be such that it adequately captures the system dynamics,
typically ranging from seconds to hours.

This results in a model structure depicted in Fig. 1, with strategic nodes denoted by
‘ ’ and operational nodes by ‘ ’. It is important to note that the sequence of operational
nodes would typically be much longer, often extending to thousands of nodes – for
instance, one year with hourly time steps equates to 8760 operational nodes.

Suppose we aim to evaluate the infrastructure using four operational scenarios instead
of one, to obtain a more robust performance estimate. Typically, this would result in a
structure depicted in Fig. 2a. It is evident that the model size grows exponentially with
the number of periods, quickly leading to intractable models.

The multi-horizon approach circumvents this exponential growth by decoupling the
strategic nodes from the operational scenarios, as shown in Fig. 2b. An alternative
interpretation of the approach is that we construct a scenario tree for the strategic
nodes and interpret the operational nodes as being ‘subtrees’ of their strategic nodes,
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Figure 3: Multi-horizon scenario tree with both strategic uncertainty (modelled by
the two strategic nodes in the second strat. period) and operational uncer-
tainty (modelled by operational scenarios attached to all strategic nodes).
Dashed lines represent the strategic tree, i.e., the connections between the
strategic nodes.

as shown in Fig. 3.1 In other words, we have two types of scenario structures, each
with different time discretizations and horizons. While this approach can theoretically
be generalized to more than two levels (hence its name), all papers and models we are
aware of utilize only the two levels outlined above.

The multi-horizon approach is particularly well suited for large-scale energy-system mod-
els, such as the EMPIRE model (Backe et al., 2022, Skar et al., 2016) and the stochastic
version of the TIMES model (Loulou and Lettila, 2016, Ringkjøb et al., 2020, Seljom
and Tomasgard, 2015). It has also been applied to natural-gas infrastructure mod-
elling (Hellemo et al., 2013), hydro-power planning (Abgottspon and Andersson, 2016),
optimization of building retrofits (Rocha et al., 2016), design of charging infrastruc-
ture Bordin and Tomasgard (2019), power-system restructuring and capacity expansion
(Backe et al., 2021, Bordin et al., 2021), and modelling of offshore energy hubs Zhang
et al. (2022).

In addition to applications, Maggioni et al. (2019) explores the theoretical properties of
multi-horizon stochastic programs, including bounds on the significance of stochasticity
in these models. Moreover, Zhang et al. (2023a,b) develop several decomposition-based
solution techniques that take advantage of the hierarchical structure of multi-horizon
models. They achieved a significant reduction in solution times compared to generic
decomposition methods.

1.1. Reducing the length of operational scenarios
Once we have separated the operational scenarios from different strategic nodes, we can
further decrease the model size by reducing the length of the operational scenarios. For
instance, instead of one yearly scenario, we can represent the year by one or more repre-
sentative days or weeks and then scale their effects (costs etc.) to one year. With long

1Some authors refer to the resulting model as two-stage, with the first stage consisting of the strategic
variables and the second stage consisting of the operational variables and being conditional on the
first stage. Note that this interpretation is independent on the number of strategic periods in the
model.
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strategic periods, this can reduce the model size by more than an order of magnitude,
making this approach appealing for large-scale and long-term models. Notably, both the
aforementioned energy-system models, EMPIRE and TIMES use this approach.

1.2. Long-term storage problem
The size-reduction comes at a cost: since we have eliminated the link between opera-
tional scenarios in consecutive strategic periods, the approach does not provide a natural
way of modelling of storages spanning several strategic periods. This becomes even more
complex if we use multiple representative periods instead of operational scenarios span-
ning the entire duration of the strategic periods. Strømholm and Rolfsen (2021) partially
addressed this issue by providing formulas for the inventory level at the end of strate-
gic periods, but their approach does not consider how this affects the required storage
capacities.

This means that it has so far been impossible to use a multi-horizon model for di-
mensioning long-term storages – one can include them in the model, but their capacities
would be adjusted for the representative periods in use (days or weeks), not for the
period they are meant to represent (year).

In this paper, we address this issue and demonstrate how to approximate storage
capacities and inventory levels for several types of operational scenarios and time scopes.
For this, we utilize the HyOpt optimization model (Kaut et al., 2019), which is presented
in the next section.

2. Relevant aspects of the HyOpt model
HyOpt is a model for optimal dimensioning of energy systems, implementing the concepts
described in Section 1, with a scenario tree as in Fig. 3, i.e., a tree consisting of strategic-
decisions nodes, each with an attached set of operational scenarios.

Given that HyOpt is a complex model, it is not feasible to present a complete for-
mulation here. For this, we direct the reader to Kaut et al. (2019), or to our imple-
mentation in the FICO™ Mosel optimization language, freely available from https:
//gitlab.sintef.no/open-hyopt. Instead, this section presents a subsection of the
model relevant to storage modelling.

2.1. Notation
Indices
sn strategic node, i.e., one node of the strategic scenario tree
sc operational scenario
op operational period
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Table 1: Weights and multipliers of 3 operational scenarios in a one-year strategic
period (∆T SP

sn = 365 days). ∆T SC
sc is given in days. The last column shows

how many days each scenario represents: days = ∆T SC
sc × MSC

sn,sc.

oper. sc. W SC
sn,sc ∆T SC

sc T M
sn,sc MSC

sn,sc days
scen. 1 182/365 7 365/7 26 182
scen. 2 182/365 7 365/7 26 182
scen. 3 1/365 1 365 1 1
sum 1.0 365

Parameters
W SC

sn,sc weight of oper. scenario sc in strategic node sn
T M

sn,sc time-scaling multiplier for scenario sc in strat. node sn
MSC

sn,sc overall multiplier for scenario sc in strat. node sn
∆T SP

sn duration of strategic period in strat. node sn
∆T SC

sc duration of operational scenario sc
∆T OP

sc,op duration of oper. period op in operational scenario sc

2.2. Scenario-tree structure in HyOpt
In HyOpt, the strategic scenario tree consists of strategic nodes, each belonging to one
strategic period. A strategic scenario is a path from the root of the strategic tree to one
of the leaves.

Each of the strategic nodes has one or more operational scenarios associated with
it. These scenarios can vary in length and time resolution. Each scenario also has
an assigned weight W SC

sn,sc, denoting the time spent in the scenario as a fraction of the
strategic period – implying ∑

sc W SC
sn,sc = 1 for all strategic nodes sn.

If the duration of an operational scenario does not match the duration of its associated
strategic period, we must scale all effects of the scenario up to the strategic period using
the multiplier

MSC
sn,sc = W SC

sn,sc × T M
sn,sc (1)

where
T M

sn,sc = ∆T SP
sn /∆T SC

sc . (2)

As an example, Table 1 shows a situation where a strategic node in a one-year strategic
period has three operational scenarios, two weekly for normal situations and one daily
representing an extreme day. There, the last column shows how may days of the year are
represented by each scenario. The table also illustrates that the weights do not equate
to probabilities if the scenarios differ in length: the extreme day occurs (on average)
once per year while each of the normal scenarios occurs 26 times, so the probabilities of
these scenarios occurring are 1/53 and 26/53, respectively.
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3. Storage handling
This section presents formulas for managing storages in the HyOpt model. In particu-
lar, we demonstrate how to adjust the storage capacity, dependent on the duration of
the operational scenarios and the time-scale of the storages. We also introduce a new
concept, scenario groups, and demonstrate its impact on the presented formulas.

3.1. Relevant notation
Indices

i storage node, i.e., node in the network modelling the system

Variables
invi,sn,sc,op inventory level of storage i at the end of oper. period (sn, sc, op)
invinit

i,sn,sc inventory level at the start of oper. scenario (sn, sc)
invend

i,sn,sc inventory level at the end of oper. scenario (sn, sc)
invinit

i,sn initial inventory level of storage i at strat. node sn

invend
i,sn final inventory level of storage i at strat. node sn

All the inventory variables are non-negative and limited by caps,sn, the capacity available
at strat. node sn:

0 ≤ invi,sn,sc,op ≤ capi,sn , (3)

and correspondingly for the other variables.

3.2. Scaling storages from operational scenarios
While costs can be scaled by MSC

sn,sc, managing storage needs additional consideration.
At least two issues need attention: the inventory level at the end of a strategic period,
and the minimum storage capacity required for the presented scenarios.

If we denote by inv∆
i,sn,sc the change of the inventory during oper. scenario sc,

inv∆
i,sn,sc = invend

i,sn,sc − invinit
i,sn,sc ,

then the overall change in the inventory at strategic node sn is

inv∆
i,sn =

∑
sc

MSC
sn,sc × inv∆

i,sn,sc .

Assuming further that all operational scenarios begin with the same inventory level,

invinit
i,sn,sc = invinit

i,sn ,

the final inventory is given by (Strømholm and Rolfsen, 2021)

invend
i,sn = invinit

i,sn + inv∆
i,sn . (4)
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Figure 4: Storage level changes with common starting point

The aforementioned requirement that all operational scenarios within a single strategic
node begin with the same inventory level corresponds to the interpretation of operational
scenarios as a set of possible random occurrences: since we do not know which scenario
will happen, we cannot adjust inventory levels in anticipation.

This requirement also assists in determining the storage dimensions. To illustrate
this, consider the three scenarios from Table 1 and assume that the inventory changes of
storage i in the three scenarios are (10, -9, -25), respectively. With a cost associated to
the installed storage capacity and no additional constraints, the model will choose the
minimum capacity that satisfies Eq. (3) in all scenarios. In our case, this leads to the
inventory levels presented in Fig. 4, requiring storage capacity of 352.

However, it is important to note that this storage capacity is an underestimation.
Considering that both ‘normal’ scenarios (scen. 1 and scen. 2) occur 26 times during the
strategic period and assuming they occur randomly, we can expect multiple consecutive
occurrences of each. This significantly increases the required capacity.

For instance, starting with two consecutive occurrences of scen. 1 results with an
inventory level of 25 + 2 × 10 = 45, requiring capi,sn ≥ 45. Simultaneously, a single
occurrence of scen. 2 preceded or followed by scen. 3 would lead to an infeasible inventory
level 25 − 25 − 9 = −9. To avoid this infeasibility, the initial inventory level would need
to increase to 25 + 9 = 34, requiring capi,sn ≥ 44 . . . and capi,sn ≥ 45 + 9 = 54 if we
wanted to consider the first sequence as well. In both cases, allowing more repetitions
would increase the required capacity even further.

Conversely, if we were certain that the two normal scenarios alternate, then no repeti-
tions could occur and capi,sn =44 would be sufficient to cover all allowed permutations.
This shows that the degree of capacity underestimation is inherently case-dependent.

3.3. Operational scenarios in sequence
In the previous sections, we assumed that operational scenarios occur randomly. How-
ever, this assumption does not hold when the scenarios represent sequential events, such

2This assumes that the inventory levels change monotonously from the start to the end of each oper-
ational period, which is typically not the case. We will address this issue later.
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Table 2: Weights and multipliers of 5 operational scenarios. Again, ∆T d
sc is the du-

ration of oper. scenario sc in days and column ‘days’ shows how many days
each scenario represents. In addition, the last column shows the inventory
changes scaled to the whole strategic period, inv∆SP

i,sn,sc = T M
sn,sc × inv∆

i,sn,sc.

oper. sc. W SC
sn,sc ∆T d

sc T M
sn,sc MSC

sn,sc days inv∆
i,sn,sc inv∆SP

i,sn,sc

winter 91/365 7 365/7 13 91 -10 -130
spring 91/365 7 365/7 13 91 15 195
summer 91/365 7 365/7 13 91 -5 -65
autumn 91/365 7 365/7 13 91 0 0
bad day 1/365 1 365 1 1 -5 -5
sum 1.0 365 -5

0

10

20

start end
0

25

5
10
5

winter
spring

summer
autumn
bad day

Figure 5: Storage level changes with oper. scenarios from Table 2 interpreted as
random events

as seasons within a year. This is frequently employed in long-term models, as shown in
Skar et al. (2016) or Strømholm and Rolfsen (2021).

In these instances, the scenarios do not occur randomly throughout the strategic
period. Rather, if we have one scenario per season, its probability is 100% during that
season and 0% elsewhere. It follows that the scenarios occur consecutively – 13 times
in the case of weekly scenarios representing seasons. This significantly impacts the
necessary storage capacity.

To demonstrate this, consider the scenarios from Table 2. If we treat these as random
events, the overall storage change is −5 and the required capacity is 25, as shown in
Fig. 5. To enable the scenarios to represent the sequence of seasons, we first need to
decide how to manage the ‘bad day’ scenario. We have allocated it to spring, which is
thus represented by two scenarios with a total inventory change of 190. The inventory-
level changes for each scenario are displayed in the last column of Table 2 and the entire
annual profile in Fig. 6. The figure shows that the minimal storage capacity required in
this case is 195, nearly eight times more than in the original approach. Note that the
total inventory-level change remains at −5, unaffected by the grouping.
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Figure 6: Storage level changes with oper. scenarios from Table 2, interpreted as
four seasons in sequence with the ‘bad day’ scenario assigned to spring.

3.3.1. Extra model notation

To implement the scenario groups in the model, we need to introduce extra notation:

Parameters and sets

GSC
sn ordered list of scenario groups at strategic node sn

SG
sn,g set of operational scenarios in group g ∈ GSC

sn

∆T G
sn,g duration of scenario group g ∈ GSC

sn

W SC,G
sn,g,sc relative weight of scenario sc within scen. group g ∈ GSC

sn

T M,G
sn,g,sc time scaling factor for scenario sc within scen. group g ∈ GSC

sn

MSC,G
sn,g,sc multiplier for scenario sc within scen. group g ∈ GSC

sn

gfirst
sn first scen. group in strat. node sn

glast
sn last scen. group in strat. node sn

Variables invG,init
i,sn,g inventory level at the start of scenario group g ∈ GSC

sn

invG,end
i,sn,g inventory level at the end of scenario group g ∈ GSC

sn

The inventory-level variables are again non-negative and limited by capi,sn. In addition,
the new entities are connected by the following relations:
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Table 3: Alternative scenarios for the summer group. Analogously to Table 2,
inv∆G

i,sn,g,sc = T M,G
sn,g,sc × inv∆

i,sn,sc is the inventory-level change during the
scenario, scaled to the duration of the group. The last column shows the
maximum inventory level reached within each oper. scenario, relative to its
starting level, invmax ∆

i,sn,sc = maxop invi,sn,sc,op − invinit
i,sn,sc.

oper. scen. W SC
sn,sc W SC,G

sn,g,sc T M,G
sn,g,sc MSC,G

sn,g,sc inv∆
i,sn,sc inv∆G

i,sn,g,sc invmax ∆
i,sn,sc

summer-1 42/365 6/13 13 6 5 30 10
summer-2 42/365 6/13 13 6 −12 −72 0
summer-3 7/365 1/13 13 1 −23 −23 0

W SC,G
sn,g,sc = W SC

sn,sc /
∑
s̃c∈g

W SC
sn,s̃c

T M,G
sn,g,sc = ∆T G

sn,g/∆T OP
sc,op

MSC,G
sn,g,sc = W SC

sn,sc × T M,G
sn,g,sc

invG,init
i,sn,gfirst

sn
= invinit

i,sn

invinit
i,sn,sc = invG,init

i,sn,g

invG,end
i,sn,g = invG,init

i,sn,g +
∑

sc∈SG
sn,g

MSC,G
sn,g,sc × inv∆

i,sn,sc

invG,init
i,sn,g = invG,end

i,sn,g−1 if g − 1 ∈ GSC
sn else invinit

i,sn,sn

invend
i,sn = invG,end

i,sn,glast
sn

where g ∈ GSC
sn and sc ∈ SG

sn,g, in all constraints where they appear. Since we treat
scenarios within each group as random events, we force them to start from a common
initial level. The last constraint ensures that the installed capacity is big enough to
handle also the final inventory level in the sequence.

3.3.2. Repeated scenarios

Now, consider the consequences of substituting the current summer scenario with the
three weekly scenarios presented in Table 3. There, the last column includes the max-
imum inventory level during the scenario, relative to its initial level. This implies that
the inventory in scenario ‘summer-1’ initially increases by 10 units and subsequently
decreases, resulting in an overall change of +5 units.

Since 30 − 72 − 23 = −65, the total inventory change during summer remains un-
changed, so the overall inventory profile stays the same as in Fig. 6 – except that scenario
‘summer-1’ increases the required storage capacity from 195 to 205, to accommodate the
maximum level reached during this scenario.
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However, if this scenario were to occur consecutively two or more times, it would
necessitate an even higher capacity. This implies that we need to determine the number
of repetitions we wish to consider. The maximum number of repetitions is MSC,G

sn,g,sc;
for ‘summer-1’, this translates to 6 consecutive occurrences – but this happens with
a probability of only (W SC,G

sn,g,sc)6 = (6/13)6 = 0.97%, so considering it might be overly
conservative. Instead, we have opted to set a limit on the probability we intend to
consider, denoted by P R. This restricts the number of consecutive occurrences to

seqG
sn,g,sc = ⌊ln(P R)/ ln(Wsn,s/W g

sn,g)⌋ , (5)

bounded by 1 from below and MSC
sn,sc from above.

In our case, we use P R = 5%. For ‘summer-1’, this means considering up to seqG
sn,g,sc =

⌊ln(0.05)/ ln(6/13)⌋ = 3 consecutive occurrences. In the initial one, the inventory level
goes from 195 to 200, with a maximum at 205. The first repetition starts with inventory
level of 195 + 5 = 200 and the second with 195 + 2 × 5 = 205, with a maximum reaching
205 + 2 × 5 = 215. This would thus become the new required capacity.
To incorporate this capacity requirement into the model, we merely need to address
the final repetition, since the inventory levels change linearly throughout the sequence
and the initial occurrence is already accounted for in the model and therefore satisfies
Eq. (3). The last occurrence has inventory levels shifted by (seqG

sn,g,sc − 1) inv∆
i,sn,sc, so

its version of Eq. (3) is

0 ≤ invi,sn,sc,op + (seqG
sn,g,sc − 1) inv∆

i,sn,sc ≤ capi,sn , (6)

for all operational scenarios sc with seqG
sn,g,sc > 1.

3.3.3. Multi-year scenarios

Up until now, we have implicitly assumed that the strategic periods are annual, with
the sequence of scenario groups (seasons) spanning the entire strategic period. If we
extend the duration to two years, the overall storage-level change doubles to −10 (−5
each year), but this is clearly not the case for inventory levels. In fact, if the overall
change in storage level were zero, the second year would mirror first, resulting in no
change to the required storage capacity.

This can be addressed analogously to the scenario repetition, using

0 ≤ invi,sn,sc,op + (⌊(∆T SP
sn /

∑
g∈GSC

sn

∆T G
sn,g⌋ − 1) inv∆G

i,sn ≤ capi,sn , (7)

where inv∆G
i,sn is the total inventory-level change in all the scenario groups,

inv∆G
i,sn =

∑
g∈GSC

sn

∑
sc∈SG

sn,g

inv∆G
i,sn,g,sc .

We also need constraints that combine Eqs. (6) and (7), to accommodate repeated
scenarios within repeated scenarios groups:

0 ≤ invi,sn,sc,op + (seqG
sn,g,sc − 1) inv∆

i,sn,sc + (⌊∆T SP
sn /∆T G

sn,g⌋ − 1) inv∆
i,sn ≤ capi,sn (8)

11



Note that Eq. (8) alone is not sufficient, and we need all Eqs. (6) to (8). To demonstrate
this, assume that we have a scenario with a storage-level change of 10 and seqG

sn,g,sc =4,
in a two-year strategic period with an overall inventory-level change of −30. Then

(seqG
sn,g,sc − 1) inv∆

i,sn,sc + (⌊∆T SP
sn /∆T G

sn,g⌋ − 1) inv∆
i,sn = 3 × 10 + 1 × −30 = 0 ,

so Eq. (8) would not have no impact, but Eqs. (6) and (7) would still be necessary.

3.4. Initial and final inventory levels
In the absence of any constraints on initial and final inventory levels, the model is likely
to opt for starting each operational scenario with full storage and ending it with an
empty one, effectively gaining full storage at no cost. There are two common strategies
to tackle this issue: assigning a value to the inventory or requiring that the storage ends
with the same level as it started. In HyOpt, we use the latter approach with several
time scopes for the storage-level looping, to distinguish between short- and long-term
storages:

oper-scenario, where we require that the inventory level loops back in every opera-
tional scenario, i.e., inv∆

i,sn,sc = 0. This is typically used for batteries, where each
scenario constitutes a daily or weekly ‘schedule’ with charging overnight.

scen-group, where we mandate that the inventory level loops back within each sce-
nario group, i.e., inv∆G

i,sn,g = 0. If the scenario groups represent seasons, this would
suit storages that cycle in weeks or a few months, such as medium-sized hydrogen-
storage systems or smaller hydro reservoirs.

strat-node, where we require that the inventory level at the end of a strategic node
equals the initial level, i.e., inv∆

i,sn = 0. With yearly strategic time periods, this
corresponds to inter-seasonal storage like large hydrogen storage or mid-sized hydro
reservoirs.

overall, where we mandate that the final inventory level at the end of all strategic
nodes in the last strategic periods finishes on a level that equals the initial level in
the first strategic period. This corresponds to large hydro reservoirs.

Note that a storage node with scope ‘strat-node’ or shorter would not, by definition,
require Eqs. (7) and (8), and a storage node with ‘oper-scenario’ scope would not need
Eq. (6) either.
The complete HyOpt implementation of the storage modelling, in the FICO™ Mosel
modelling language, can be found in Appendix A.

4. Test case
We consider a small test case inspired by the LowEmission project3, which involves
the electrification of an offshore installation using wind turbines combined with energy

3See https://www.sintef.no/projectweb/lowemission/
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Figure 7: HyOpt representation of of the test case from Section 4. Red arrows
represent flow of power, green arrows flow of hydrogen. Nodes whose
capacities are being optimized are denoted by solid-line borders.

Table 4: Model time structures considered in the test case. T hor,y is the overall time
horizon, in years, |T SP| is the number of strategic periods, and ∆T SP,y

sn

shows the duration of the strat. periods, in years.

struct. T hor,y |T SP| ∆T SP,y
sn wind-data year

1 × 1 1 1 1 2018
1 × 5 5 1 5 2018–2022
5 × 1 5 5 (1, 1, 1, 1, 1) 2018–2022

storage. In our case, the storage system is hydrogen-based, comprising an electrolyzer,
a hydrogen tank, and fuel cells. In HyOpt, this results in a network structure presented
in Fig. 7.

The wind-production data are derived from actual wind-speed measurements from
the Ekofisk field in the North Sea in years 2018–2022. These measurements, obtained
from the Norwegian Meteorological Institute using its Frost API4, are converted into a
wind-production capacity factor using a production profile for Vestas V164/8000 wind
turbine, sourced from the Open Energy Platform5. We assume a constant power load
of 20 MW. All cost and performance data are obtained from an open HyOpt test case,
accessible at https://gitlab.sintef.no/open-hyopt/test-case-1.

4.1. Case variants
We evaluate the model using three time structures, 1 × 1, 1 × 5, and 5 × 1, presented
in Table 4. The a × b notation represents a strategic periods, each lasting b years. For
each time structure, we examine the impact of the following operational variants:

full, with one operational scenario per strategic period, spanning the entire length of
the period.

4See https://frost.met.no/.
5See https://openenergy-platform.org/.
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Table 5: Number of weeks in operational scenarios and the size reduction compared
to the full model, for the tested time structures and model variants

1 × 1 1 × 5 5 × 1
case variant weeks reduct. weeks reduct. weeks reduct.

full 52 − 260 − 260 −
mean 4 13 4 65 20 13

mean+min 8 6.5 8 32.5 40 6.5

mean, with four operational scenarios per strategic period, each lasting one week.
Each scenario represents a season and is chosen as the week in the data whose
average capacity factor is closest to the seasonal average within the given time
interval.6

mean+min, with eight weekly operational scenarios per strategic period. For each
season, we select the week with the smallest above-average capacity factor, and
the week with the smallest capacity factor as the worst case scenario. The scenario
weights are chosen so that the weighted average is equal to the average capacity
factor of the season.

In all cases, the operational scenarios use an hourly time resolution. We use astronom-
ical definitions of seasons, where each season lasts three months and winter starts on
December 1. As a result, our ‘year’ runs from December to November to ensure it con-
sists of four complete seasons. In other words, when we refer to, for example, 2018, the
actual interval is from December 1, 2017, to November 30, 2018.

The sizes of the scenario trees for the variants are summarized in Table 5. There, we
observe that the size reduction from using the weekly scenarios ranges from 6.5 times to
32.5 times, compared to the case with a full time sequence.
To examine the effect of scenario groups, as described in Section 3.3, we use two versions
of the multi-scenario variants (‘mean’ and ‘mean+min’):

fan, where all scenarios are interpreted as random events, resulting in a single ‘fan’
of scenarios.

groups, with scenarios grouped by season (one per season for ‘mean’ and two for
‘mean+min’).

This results in a total of five case variants for testing.
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Figure 8: Results for time struct. ‘1 × 1’: one strat. period one year long
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Figure 9: Results for time struct. ‘1 × 5’: one strat. period 5 years long
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Figure 10: Results for time struct. ‘5 × 1’: 5 yearly strat. periods

4.2. Results
All test variants were solved using FICO™ Xpress Solver v 8.14, on a laptop with Intel®
Core™ i7-7600U CPU operating at 2.80 GHz, and 16 GB of RAM. The results for the
one-year case are displayed in Figs. 8 to 10. There, the left panels confirm that the
solution times for the scenario-based versions are significantly shorter than for the ‘full’
model, with a speed-up corresponding to the problem-size reduction shown in Table 5.
Specifically, the speed-up ranges from 5–6 in the worst case of the ‘5 × 1’ variant to over
100 for the ‘1 × 5’ variant.

In terms of the objective function, i.e., the total costs, we can make the following
observations:

• The ‘mean+min’ variants are more costly than ‘mean’. This is expected, as they
must account for the extreme scenarios.

• The ‘groups’ variants are more costly than ‘fan’. This indicates that the dynamics
introduced by the grouping is effective, compelling the model to handle multiple
consecutive occurrences of scenarios representing a single season.

6Note that this simple selection approach is applicable only to one-dimensional randomness (in our
case, the wind-production capacity factor). With multidimensional randomness, or a need for more
scenarios, a different approach would be needed. One popular choice is clustering methods such as
k-medoids (Kaufman and Rousseeuw, 1990, Chapter 2) – a method similar to k-means, but using
actual data points as cluster centres. For more methods see, for example, Bounitsis et al. (2022) or
Kaut (2021).
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• The ‘mean+min_groups’ variants can be more costly than ‘full’. This could be
because the scenario variants force the model to handle both the ‘min’ scenario and
multiple occurrences of the ‘mean’ scenarios simultaneously (at the start of each
season), while the actual sequence in the ‘full’ variant might be easier to manage.

The last point is important: Eq. (6) compels the model to consider multiple repetitions
of the involved scenarios, up to the specified probability. As a result, the solutions have to
handle many different permutations of the involved scenarios. The ‘full’ variant, on the
other hand, allows the model to adapt the solution to the one scenario (historical data)
included in the tree. Consequently, the scenario selection might yield more expensive
solutions.

However, this does not necessarily mean that the scenarios lead to better solutions.
For instance, consider a 12-week season represented by two weekly scenarios of equal
weight, where the inventory level increases by 10 in the first scenario and decreases by
10 in the second. With a 5% limit on scenario repetitions, we get reps,sn,g = 4, so the
model will have to handle up to four consecutive occurrences of either scenario. This
will require the storage capacity to be at least 80, to allow the inventory to both increase
and decrease by 40 units, assuming it starts at 40. If the two scenarios in reality tend
to alternate and never occur more than twice consecutively, the actual storage-capacity
requirement would be lower and so would be the total costs.

The right panels of Figs. 8 to 10 illustrate the sources of the costs. We can see
that increased wind variability (i.e., more scenarios) is addressed by a combination of
increased hydrogen storage and increased wind-production capacity. Specifically, in the
‘1×1’ variant, the most expensive case is the one with largest storage, while in the ‘1×5’
and ‘5 × 1’ variants, it is the one with the largest wind park. This interplay between the
two components makes it difficult to draw conclusions about the effects of the scenario
structure on either of them alone.

5. Conclusions
This paper presents a methodology for modelling long-term storage within the multi-
horizon modelling paradigm, including an approximation of the required storage capac-
ities. This overcomes a significant barrier for the adoption of this modelling approach,
thereby broadening its applicability to a wider range of problems.

The proposed formulation is implemented in the HyOpt optimization model, which
is freely accessible from https://gitlab.sintef.no/open-hyopt/. The test case from
Section 4 can be found at https://gitlab.sintef.no/open-hyopt/test-case-2. This
includes scripts for solving the problems using pyHyOpt, a python interface to HyOpt,
also available from the HyOpt page.
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Appendix
A. Mosel code for the storage modelling
Below, we present the HyOpt implementation of the presented storage-modelling ap-
proach, written in the FICO™ Mosel modelling language. This is a slightly cleaned
version of the relevant section from file HYOPT_model.mos, available from the HyOpt
model repository.

HyOpt implementation of storage modelling
! General storage modeling
declarations

strat_end_level : array(ST_N) of linctr ! end -of -strat -per storage
level

end - declarations

declarations
OSG_GroupWeight : array(STORAGES , ST_N , OSC_GROUPS ) of real
osc_group_level_change : array(STORAGES , ST_N , OSC_GROUPS ) of linctr
osc_group_end_level : array(STORAGES , ST_N , OSC_GROUPS ) of mpvar
osc_num_repeats : integer ! number of repetitions

end - declarations

forall (s in STORAGES ) do
! Storage level can not exceed total storage capacity ( invested +

existing )
forall (sn in ST_N | exists ( capacity (s,sn)), sc in SN_OP_SCENS (sn)) do

InitStorageLevelCapConstr (s,sn ,sc) :=
init_storage_level (s,sn ,sc) <= StorageUnitMult (s) *

capacity (s,sn)
forall (op in O_PERS (sc)) do

Storage_capacity (s,sn ,sc ,op) :=
storage_level (s,sn ,sc ,op) <= StorageUnitMult (s) *

capacity (s,sn)
end -do

end -do

! Mass balance in storage
forall (sn in ST_N , sc in SN_OP_SCENS (sn), op in O_PERS (sc)) do

MassBalance_storage (s,sn ,sc ,op) :=
storage_level (s,sn ,sc ,op) =

if(op = FirstOpPer (sc), init_storage_level (s,sn ,sc),
storage_level (s,sn ,sc ,op -1)) +

sum(n in NODES) FillEfficiency (s) *
flow(n,s, StorageProduct (s),sn ,sc ,op) +
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- sum(n in NODES) 1/ EmptyEfficiency (s) *
flow(s,n, StorageProduct (s),sn ,sc ,op)

end -do

if not UseOpScenGroups then
! initial values and cyclical storage - depends on the time scope
if StorageTimeScope (s) <> ’oper_scen ’ then

forall (sn in ST_N) do
strat_end_level (sn) := sum(sc in SN_OP_SCENS (sn))

OperScenWeight (sn ,sc) * (
init_storage_level (s,sn ,sc) + SPerOpMult (sn ,sc) *

( storage_level (s,sn ,sc , LastOpPer (sc)) -
init_storage_level (s,sn ,sc)))

end -do
end -if
case StorageTimeScope (s) of

’oper_scen ’: do ! storage tracking per oper. scenario
! control the initial storage
if exists ( InitialStorageFill (s)) then

forall (sn in ST_N , sc in SN_OP_SCENS (sn)) do
InitStorageLevelConstr (s,sn ,sc) :=

init_storage_level (s,sn ,sc) = InitialStorageFill (s) *
StorageUnitMult (s) * capacity (s,sn)

end -do
end -if
! cyclical storage
if StorageIsCyclic (s) then

forall (sn in ST_N , sc in SN_OP_SCENS (sn)) do
InitStorageLevelConstr (s,sn ,sc) :=

init_storage_level (s,sn ,sc) =
storage_level (s,sn ,sc , LastOpPer (sc))

end -do
end -if

end -do

’strat_node ’: do ! storage tracking per node of the strategic
tree

! control the initial storage
if exists ( InitialStorageFill (s)) then

forall (sn in ST_N , sc in SN_OP_SCENS (sn)) do
InitStorageLevelConstr (s,sn ,sc) :=

init_storage_level (s,sn ,sc) = InitialStorageFill (s) *
StorageUnitMult (s) * capacity (s,sn)

end -do
end -if
! cyclical storage
if StorageIsCyclic (s) then

forall (sn in ST_N) do
forall (sc in SN_OP_SCENS (sn)) do

InitStorageLevelConstr (s,sn ,sc) :=
init_storage_level (s,sn ,sc) = strat_end_level (sn)

end -do
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end -do
end -if

end -do

’overall ’: do ! storage tracking for the whole duration of the
model

! tracking between strat. periods
forall (sn in ST_N | ST_N_CH (sn).size > 0) do

forall (snc in ST_N_CH (sn), sc in SN_OP_SCENS (snc)) do
InitStorageLevelConstr (s,snc ,sc) :=

init_storage_level (s,snc ,sc) = strat_end_level (sn)
end -do

end -do
! control the initial storage
if exists ( InitialStorageFill (s)) then

forall (sn in { STRootN }, sc in SN_OP_SCENS (sn)) do
InitStorageLevelConstr (s,sn ,sc) :=

init_storage_level (s,sn ,sc) = InitialStorageFill (s) *
StorageUnitMult (s) * capacity (s,sn)

end -do
end -if
! cyclical storage
if StorageIsCyclic (s) then

forall (sn in ST_N | ST_N_CH (sn).size = 0) do
forall (sc in SN_OP_SCENS ( STRootN )) do

InitStorageLevelRootConstr (s,sn ,sc) :=
init_storage_level (s,STRootN ,sc) = strat_end_level (sn)

end -do
end -do

end -if
end -do

end -case

else
! UseOpScenGroups = true
forall (sn in ST_N , osg in OSC_GROUPS | exists ( OSC_GROUP_SCENS (sn ,

osg))) do
OSG_GroupWeight (s,sn ,osg) := sum(sc in OSC_GROUP_SCENS (sn , osg))

OperScenWeight (sn ,sc)
create ( osc_group_init_level (s,sn ,osg))
osc_group_level_change (s,sn ,osg) := sum(sc in

OSC_GROUP_SCENS (sn , osg)) OperScenWeight (sn ,sc) /
OSG_GroupWeight (s,sn ,osg) * OpScenGroupDurH (sn ,osg) /
OperScenDurH (sc) * ( storage_level (s,sn ,sc , LastOpPer (sc)) -
init_storage_level (s,sn ,sc))

OSG_GroupEndLevelDef (s,sn ,osg) :=
osc_group_end_level (s,sn ,osg) = osc_group_init_level (s,sn ,osg)

+ osc_group_level_change (s,sn ,osg)

! handling scenario repetitions
forall (sc in OSC_GROUP_SCENS (sn , osg)) do

with p = OperScenWeight (sn ,sc) / OSG_GroupWeight (s,sn ,osg) do
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with maxRepeats = round(p * OpScenGroupDurH (sn ,osg) /
OperScenDurH (sc)) do

if p = 1 then
osc_num_repeats := maxRepeats

else
osc_num_repeats := minlist (floor(ln( OSG_ScenRepeatProb )

/ ln(p)), maxRepeats )
end -if

end -do
end -do
if osc_num_repeats > 1 then

forall (op in O_PERS (sc)) do
! storage levels in the last repetition must be within

bounds
OSG_StorageLevelAdjMin (s,sn ,sc ,op) :=

storage_level (s,sn ,sc ,op) + ( osc_num_repeats - 1) *
( storage_level (s,sn ,sc , LastOpPer (sc)) -
init_storage_level (s,sn ,sc)) >=

if( exists ( StorageMinLevelRel (s)), StorageUnitMult (s) *
StorageMinLevelRel (s) * capacity (s,sn), 0)

if exists ( capacity (s,sn)) then
! upper bound only if we have capacity
OSG_StorageLevelAdjMax (s,sn ,sc ,op) :=

storage_level (s,sn ,sc ,op) + ( osc_num_repeats - 1) *
( storage_level (s,sn ,sc , LastOpPer (sc)) -
init_storage_level (s,sn ,sc)) <=

StorageUnitMult (s) * if( exists ( StorageMaxLevelRel (s)),
StorageMaxLevelRel (s), 1) * capacity (s,sn)

end -if
end -do

end -if
end -do

end -do

! inside each group , the initial storage level should be the same
forall (sn in ST_N , osg in OSC_GROUPS , sc in OSC_GROUP_SCENS (sn ,

osg)) do
OSG_InitLevelInGroupConstr (s,sn ,sc) :=

init_storage_level (s,sn ,sc) = osc_group_init_level (s,sn ,osg)
end -do

! storage -level tracking between groups - for all time scopes
forall (sn in ST_N , osg in OSC_GROUPS | osg > FirstOpScGroup (sn)

and exists ( OSC_GROUP_SCENS (sn , osg))) do
OSG_StorageLevelSeqConstr (s,sn ,osg) :=

osc_group_init_level (s,sn ,osg) = osc_group_end_level (s,sn ,osg
- 1)
end -do

! storage -level tracking between strategic periods /nodes
if StorageTimeScope (s) = ’overall ’ then

! - init_level of next period is equal to the end_level from
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previous per.
forall (sn in ST_N | exists ( STPrevN (sn))) do

OSG_OverallStorageLoop (s,sn) :=
osc_group_init_level (s,sn , FirstOpScGroup (sn)) =

osc_group_end_level (s, STPrevN (sn),LastOpScGroup ( STPrevN (sn)))
end -do

end -if

if exists ( InitialStorageFill (s)) then
! fixed initial storage fill
case StorageTimeScope (s) of

’oper_scen ’, ’osc_group ’: do
! storage tracking per oper. scenario or oper. scen. group
forall (sn in ST_N , osg in OSC_GROUPS |

exists ( OSC_GROUP_SCENS (sn , osg))) do
OSG_InitStorageLevelGroup (s,sn ,osg) :=

osc_group_init_level (s,sn ,osg) = InitialStorageFill (s) *
StorageUnitMult (s) * capacity (s,sn)

end -do
end -do

’strat_node ’: do
! storage tracking per node of the strategic tree
forall (sn in ST_N , osg in { FirstOpScGroup (sn)}) do

OSG_InitStorageLevelGroup (s,sn ,osg) :=
osc_group_init_level (s,sn ,osg) = InitialStorageFill (s) *

StorageUnitMult (s) * capacity (s,sn)
end -do

end -do

’overall ’: do
! storage tracking for the whole duration of the model
forall (sn in { STRootN }, osg in { FirstOpScGroup (sn)}) do

OSG_InitStorageLevelGroup (s,sn ,osg) :=
osc_group_init_level (s,sn ,osg) = InitialStorageFill (s) *

StorageUnitMult (s) * capacity (s,sn)
end -do

end -do
end -case

end -if ! exists ( InitialStorageFill (s))

if StorageIsCyclic (s) then
case StorageTimeScope (s) of

’oper_scen ’: do
! storage level loops in every oper. scenario
forall (sn in ST_N , sc in SN_OP_SCENS (sn)) do

InitStorageLevelConstr (s,sn ,sc) :=
init_storage_level (s,sn ,sc) =

storage_level (s,sn ,sc , LastOpPer (sc))
end -do

end -do

24



’osc_group ’: do
! storage level loops in each oper. scenario group
forall (sn in ST_N , osg in OSC_GROUPS |

exists ( OSC_GROUP_SCENS (sn , osg))) do
osc_group_level_change (s, sn , osg) = 0

end -do
end -do

’strat_node ’: do
! storage level loops in each strategic node
forall (sn in ST_N) do

OSG_InitStorageLevelStN (s,sn) :=
osc_group_init_level (s, sn , FirstOpScGroup (sn)) =

osc_group_end_level (s, sn , LastOpScGroup (sn))
end -do

end -do

’overall ’: do
! tracking between strat. periods
forall (sn in ST_N | ST_N_CH (sn).size = 0) do

OSG_InitStorageLevelRoot (s) :=
osc_group_init_level (s, STRootN , FirstOpScGroup (sn)) =

osc_group_end_level (s, sn , LastOpScGroup (sn))
end -do

end -do
end -case

end -if
end -if ! UseOpScenGroups

! Minimum storage level .. abs
if exists ( NodeParamValue (s, ’Min level abs ’)) then

forall (sn in ST_N , sc in SN_OP_SCENS (sn), op in O_PERS (sc)) do
Storage_min_level_abs (s,sn ,sc ,op) :=

storage_level (s,sn ,sc ,op) >= StorageUnitMult (s) *
NodeParamValue (s, ’Min level abs ’)
end -do

end -if

! Minimum storage level .. relative
if exists ( StorageMinLevelRel (s)) then

forall (sn in ST_N , sc in SN_OP_SCENS (sn), op in O_PERS (sc)) do
Storage_min_level_rel (s,sn ,sc ,op) :=

storage_level (s,sn ,sc ,op) >= StorageUnitMult (s) *
StorageMinLevelRel (s) * capacity (s,sn)
end -do

end -if

! Maximum storage level .. relative
if exists ( StorageMaxLevelRel (s)) then

forall (sn in ST_N , sc in SN_OP_SCENS (sn), op in O_PERS (sc)) do
Storage_max_level_rel (s,sn ,sc ,op) :=

storage_level (s,sn ,sc ,op) <= StorageUnitMult (s) *
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StorageMaxLevelRel (s) * capacity (s,sn)
end -do

end -if
end -do
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