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Abstract

Stochastic shortest path (SSP) computations are often performed under very
strict time constraints, so computational efficiency is critical. A major determi-
nant for the CPU time is the number of scenarios used. We demonstrate that
by carefully picking the right scenario generation method for finding scenarios,
the quality of the computations can be improved substantially over random
sampling for a given number of scenarios. We study extensive SSP instances
from a freeway network and an urban road network, which involve 10,512 and
37,500 spatially and temporally correlated speed variables, respectively. On the
basis of experimental results from a total of 42 origin-destination pairs and 6
typical objective functions for SSP problems, we find that (1) the scenario gen-
eration method generates unbiased scenarios and strongly outperforms random
sampling in terms of stability (i.e., relative difference and variance) whichever
origin-destination pair and objective function is used; (2) to achieve a certain
accuracy, the number of scenarios required for scenario generation is much lower
than that for random sampling, typically about 6-10 times lower for a stability
level of 1% in the freeway network; and (3) different origin-destination pairs
and different objective functions could require different numbers of scenarios to
achieve a specified stability.

Keywords: Stochastic shortest path; spatial and temporal correlation;
scenario generation; random sampling; number of scenarios; stability

1. Introduction

The shortest path problem, with variants such as the quickest path problem,
is a classical combinatorial optimization problem, which is to find a path in a
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network (or graph) from an origin node to a destination node with the shortest
link length or quickest travel time. This problem has been the subject of exten-
sive research for many years (Deo and Pang, 1984), due to its diverse applica-
tions in routing problems in road networks (Ehmke et al., 2016; Prakash, 2018),
packet routing problems (Krioukov et al., 2004) and Internet distance predic-
tions (Shavitt and Tankel, 2008) in Internet networks, distance queries in social
networks (Akiba et al., 2013), and disease-disease interactions in biological net-
works (Maiorino et al., 2020). Most papers deal with deterministic problems,
see reviews (Sommer, 2014; Bast et al., 2016) and relevant papers in recent years
(Hu and Sotirov, 2019; Brown and Carlyle, 2019).

Real-world shortest path problems are stochastic in nature due to unpre-
dictable factors such as traffic accidents, traffic control and weather conditions
in road networks, and unpredictable transmission requests in Internet networks.
The stochastic shortest path (SSP) problem attempts to capture the uncertainty
associated with the edges by modelling the weights on edges as random vari-
ables. Various SSP problems have been investigated in road networks (Ehmke
et al., 2016; Prakash, 2018) and in Internet networks (Shavitt and Tankel, 2008).
Typical objectives to be optimized in previous SSP studies involve such as the
minimization of expected travel time (Prakash, 2018), the minimization of ex-
pected carbon emission (Ehmke et al., 2016), the minimization of a linear com-
bination of travel time mean and standard deviation (Zhang et al., 2017), and
the minimization of travel time budget for a specified on-time arrival probabil-
ity (Chen et al., 2018). The majority of previous studies on SSPs assume that
travel speeds on different road links and across different time periods are uncor-
related (Miller-Hooks and Mahmassani, 2000; Prakash, 2018; Pedersen et al.,
2020). But in recent years, an increasing number of papers consider spatially
correlated speeds (Zhang et al., 2017; Prakash and Srinivasan, 2018) in road
networks, that is, the speed on one link is correlated with the speeds on certain
other links.

It is reasonable to assume that there exists strong spatial and temporal
correlation among link travel speeds in real road networks, largely due to traffic
flow propagations over time and space, or an event, for example dynamic traffic
management (Köster et al., 2018), that affects traffic capacities in a wide area
(Rachtan et al., 2013). Guo et al. (2020) have demonstrated that this is indeed
the case based on the real speed datasets from an urban road network and a
freeway network. Temporal correlation in speeds means that the speed in one
time period is correlated with the speed in other time periods. The spatial and
temporal correlations have been studied by some researchers (Cheng et al., 2012;
Rachtan et al., 2013; Guo et al., 2020), and considered in several travel time-
and route-related decision-making problems (Zou et al., 2014; Avraham and
Raviv, 2020). The significance of spatial and temporal correlation of stochastic
speeds in SSP problems has also been demonstrated by Huang and Gao (2012),
Zockaie et al. (2013), and Zockaie et al. (2016). Huang and Gao (2012) and
Zockaie et al. (2013) found that spatial and temporal correlations could affect
the optimal path and the impact was related to the levels of correlation. Zockaie
et al. (2016) discovered that the optimal path travel time distribution in the
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spatially and temporally correlated case fell between the uncorrelated case and
the spatially correlated case.

However, the SSP research with both spatially and temporally correlated
stochastic speeds (or travel times) is still in its infancy, although there are sev-
eral studies reported in recent years (Huang and Gao, 2012; Zockaie et al., 2013;
Yang and Zhou, 2014; Zockaie et al., 2016). Some researchers (Hu et al., 2018;
Yang et al., 2018) have presented effective methods for path finding of SSP
problems by implicitly considering the dependency of link travel times based on
GPS trajectory data of vehicles. For example, Yang et al. (2018) used joint dis-
tributions to capture the travel time dependencies among candidate or partial
paths by using sparse trajectory data. However, it is unknown if these meth-
ods can model effectively the dependency required for handling the investigated
SSPs. To reflect the spatial and temporal correlations, the most general way to
describe the link travel times is in the form of the joint probability distribution
of all random travel time variables, which is generally represented by a set of
stochastic scenarios (or support points) (Gao, 2005; Wang et al., 2020). A sce-
nario represents one possible realization of travel speeds on all road links in all
time periods. Previous SSP studies adopted sampling-based methods to handle
the spatial and temporal correlations of speeds (or travel times). Zockaie et al.
(2013) sampled 1,000 scenarios from a multivariate normal distribution using
the Monte Carlo method. Yang and Zhou (2014) took 10 days of real link travel
times from the freeways of San Diego as scenarios. Zockaie et al. (2016) gen-
erated 86 scenarios using the traffic simulator, DYNASMART-P (Mahmassani
and Sbayti, 2009), based on 86 days of historical data on network-wide de-
mand levels, weather conditions, incidents, and routing strategies in downtown
Chicago. Huang and Gao (2012) sampled 50 scenarios (or support points) for
link travel times from an assumed truncated multivariate normal distribution.

These previous studies simply pick an arbitrary number of scenarios and do
not evaluate the effectiveness of the sampled scenarios. On one hand, it is well-
known that sampling-based methods usually need a large number of samples
to reflect the distribution of the random variables well, which leads to a long
computation time. In some real-world applications such as path selection and
routing in emergency rescue as well as on-demand and autonomous mobility
environments, it is critical to handle SSP problems with a high computational
efficiency. On the other hand, given historical data of the random variables, it
is still not clear how to generate appropriate scenarios needed for SSP problems
with spatially and temporally correlated speeds, except for using random sam-
pling. It is also not clear how to evaluate the quality of the generated scenarios
for different SSP problems.

Given the historical data of random variables, it is thus critical to investigate
how many scenarios are needed to establish stable, trustworthy results based
on sampling, and then propose a much more efficient method (i.e., one need-
ing much fewer scenarios for the same quality of the results) based on explicit
scenario generation for these SSP problems in real road networks.

The idea of the scenario generation method is to generate particular sce-
narios to approximate the original distribution, rather than picking samples
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randomly as in the sampling-based method used in the existing SSP literature.
The existing scenario generation methods can mainly be classified into four
types (Homem-de Mello and Bayraksan, 2014), including the Quasi-Monte Carlo
method (Wang and Tan, 2013), the sparse grid-based method (Chen et al., 2015),
the moment-matching method (Høyland et al., 2003), and the probability metric-
based method (Pflug, 2001).

However, we are going to handle a very high-dimensional distribution. The
number of random variables in our paper is up to 37,500 (1250 links × 30 peri-
ods), which leads to a 37500× 37500 correlation matrix. Due to huge memory
requirements and unaffordable computation times, all these methods fail to gen-
erate reliable scenarios for such a high-dimensional problem within reasonable
time. In particular, the first three scenario generation methods need to directly
perform factorization operations of a huge correlation matrix when the quasi-
Monte Carlo and sparse grid-based methods transform the original distribution
to a distribution on the unit cube [0, 1]d and the moment-matching method cor-
rects correlations. The probability metric-based method solves an optimization
problem to minimize the distance metric between the scenarios and the orig-
inal distribution. The four methods are all computing intensive, because the
high-dimensional matrix operations in the first three methods are very costly in
time and space and the optimization problem addressed in the fourth method
is typically non-convex and NP-hard (Löhndorf, 2016). Moreover, the error
bounds for the quasi-Monte Carlo and sparse grid-based methods increase with
the dimensionality (Holtz, 2010), and the variance of the scenarios generated by
the probability metric-based method deviates more and more from the variance
of the original distribution as the dimensionality increases (Löhndorf, 2016).
That is, in handling such high-dimensional distributions in SSPs, the scenarios
generated by these methods inevitably lead to large errors and cannot represent
the original distribution well.

Different from the above methods, Kaut (2014) proposed a copula-based
scenario generation method by modelling the marginals and the copula sepa-
rately. This is a promising method to handle our high-dimensional distributions
because it avoids directly operating the huge correlation matrix and solving
complex optimization problems. In a recent work by Guo et al. (2019b), this
scenario generation method has been used successfully to handle spatially and
temporally correlated stochastic speeds in vehicle routing problems on a sim-
plified map of Beijing. For the investigated vehicle routing problem with the
expected overtime minimization objective, only 15 scenarios (much less than
the number required by random sampling) are needed to achieve an objective-
function evaluation stability of 1% for a case with 142 nodes, 418 road links and
60 time periods, leading to over 25,000 correlated random speeds. It is still open
if this method works for the realistic stochasticity of travel speeds in real road
networks because their study assumed simplified distributions and correlations
of travel speeds.

Following Guo et al. (2019b), this paper investigates various SSP problems
with spatially and temporally correlated speeds based on real travel speed data
from a freeway network and an urban road network (Guo et al., 2020). We
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propose an effective method to generate scenarios for investigated SSP problems
by integrating the copula-based scenario generation method with a stability test
method. We find that whatever the correlation structure, there is a much better
way to find scenarios than by using random sampling. We demonstrate that
whether the goal is to obtain maximal quality for a given number of scenarios
(because there is a limited execution time available), or a certain quality for a
minimal number of scenarios (because accuracy is important), the copula-based
scenario generation method is substantially better.

This paper contributes to the SSP literature from both technical and man-
agerial perspectives. The technical contributions include (1) developing an effec-
tive and efficient methodology to construct reliable scenarios for handling SSPs
with spatially and temporally correlated travel speeds, and (2) integrating the
copula-based scenario generation method (Kaut, 2014) with a test for stabil-
ity and introducing them to the SSP area for the first time. The managerial
contribution is twofold. First, we found that different characteristics of SSPs
(different O-D pairs, objectives, and road networks) affect the required number
of scenarios to achieve a certain accuracy. Second, we found that the number
of scenarios needed in an urban road network generally is larger than that in a
freeway network.

This paper is organized as follows. In Section 2, the realistic stochasticity of
spatially and temporally correlated travel speeds is introduced. Scenario gen-
eration and solution evaluations are discussed in Section 3. Then, Section 4
shows the experimental results and analyses with different O-D pairs and differ-
ent objective functions in a freeway network. Section 5 describes the results of
similar experiments conducted in an urban road network and summarizes the
results from both road networks. In Section 6, conclusions are made and future
research directions are discussed.

2. Data-driven stochasticity of spatially and temporally correlated
travel speeds

To understand how travel speeds vary over time and space in real road
networks, Guo et al. (2020) have investigated their marginal distributions and
correlations, based on two travel speed datasets. The first dataset was a 110-
day dataset collected from the road network of Chengdu city with 1,902 nodes
and 5,943 directed links, which contains a total of 196,119,000 travel speed
records from 300 2-min time periods per day. The second dataset was a 102-day
dataset collected from the California freeway network (as shown in Fig. 1) with
168 nodes and 438 directed links, which consists of a total of 3,216,672 travel
speed records from 72 5-min time periods per day.

Guo et al. (2020) found that about 94% of random travel speeds obeyed the
normal distribution in the urban road network, while more than 93% of ran-
dom travel speeds obeyed four different distributions in the freeway network,
including normal (58%), Gumbel (24%), lognormal (6%), and beta (6%). These
distributions were fitted based on the travel speed data after outliers of travel
speeds were removed. However, some outliers were speeds close to zero on roads
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Fig. 1. Freeway network around Los Angeles. The numbers refer to nodes that we use in the
main text.

that normally had more or less free float, which are usually not errors since
they do represent real travel speeds. If the outliers were not removed, some
random speed variables, about 1% in the urban road network and about 7%
in the freeway network, could not be fitted well with these parametric distri-
butions. Moreover, even if each speed variable can be fitted with a parametric
distribution, it does not mean that the fitted distribution is the right one for
the variable unless it is known what distribution family the speed data comes
from. Therefore, when we later in this paper need marginal distributions, we
use the empirical marginal distributions directly without trying to fit parametric
distributions to the data, as our methodology allows the direct use of empirical
distributions.

Guo et al. (2020) also found that correlations of travel speeds generally
decreased with an increased distance in time and space, and about 27-42% (53-
57%) of spatial-temporal correlations were significantly positive in the urban
road (freeway) network. These results are just statistical results. They have not
reported the correlation results of separate links and the corresponding reasons.
Next, we take a link (14, 11) from the same freeway network as an example
to present how the correlations of a single link vary over time and space using
the same freeway speed dataset. Except for the three 2-hour time ranges (i.e.,
8:00-10:00, 12:00-14:00 and 17:00-19:00) considered in Guo et al.’s work (2020),
we further consider three more time ranges, including 10:00-12:00, 14:00-16:00,
and 16:00-18:00.

Fig. 2 presents the spatial correlations between link (14, 11) and all other
links in the network shown in Fig. 1 in six different time periods. In this figure,
the correlations between the two horizontal lines that are parallel with the x-
axis are statistically insignificant with a significance level of 0.05, and the red
crosses represent the correlations between link (14, 11) and its 11 neighbouring
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links (links sharing node 14 or 11). We see that, in a given time period, the
travel speeds on link (14, 11) could be either significantly or insignificantly
correlated with those on its neighbouring links. This finding holds true on all 30
randomly chosen links we observed. Also, the travel speeds on two neighbouring
links could have significantly positive or negative correlations. For example, the
speeds on link (14, 11) are significantly positively correlated with the speeds on
link (16, 14) in four time periods 10:00-10:05 (0.37), 12:00-12:05 (0.47), 14:00-
14:05 (0.43), and 17:00-17:05 (0.43). In addition, the speeds on link (14, 11)
and its neighbour (12, 14) are negatively correlated (-0.22) in time period 8:00-
8:05. The reason is simple. The two links and link (12, 11) form a triangle. A
fair number of vehicles that head from node 12 to node 11, tend to choose the
detour via node 14 when link (12, 11) is congested and link (12, 14) looks faster.
However, these vehicles could slow down link (14, 11) since many vehicles are
travelling on this link. Contrariwise, rather few vehicles going from node 12
to node 11 choose the detour via node 14 if link (12, 14) gets slower, resulting
in fewer vehicles and thus higher speeds on link (14, 11). Both cases lead
to a negative correlation between (12, 14) and (14, 11). Moreover, when the
traffic on two neighbouring links is in opposite directions, the link travel speeds
could be significantly negatively correlated as well. An example is given by the
correlation (-0.37) of travel speeds on link (14, 11) and link (11, 14) in time
period 16:00-16:05. Similar correlation findings have also been reported in the
literature (Rachtan et al., 2013; Guo et al., 2019a).

Fig. 3 exhibits the temporal correlations of link (14, 11) between the first
time period and all following time periods in six different 2-hour time ranges,
where the stars in dashed lines represent statistically insignificant correlations
with a significance level of 0.05. It is clear that, with the increase of time dis-
tance between two time periods, the temporal correlation on one link between
the two time periods decreases on the whole. And the travel speeds on link (14,
11) in two immediately neighboring time periods could have strong positive cor-
relations. We also calculate the temporal correlations on other 30 randomly
chosen links in the same six 2-hour time ranges. We find only one single (in-
significant) negative temporal correlation. These results are in line with the
findings of Cheng et al. (2012) and Rachtan et al. (2013).

Fig. 4 exhibits the correlations between travel speeds on link (14, 11) in
the time period 14:00-14:05 and speeds on its 11 neighbouring links in the 12
time periods within the time range of 14:00-15:00. We see that the correlation
between link (14, 11) and each neighbouring link gradually changes over the
time lag between the two time periods. For example, its correlation with link
(14, 12) first increases gradually to a large value (0.42) in the period 14:15-14:20
and then decreases gradually to a small value (0.14) in the last period 14:55-
15:00. The reason for this gradual change is that, as observed above, there exists
a strong positive correlation between two travel speeds on a given link in some
immediately neighboring time periods. As a result, the correlations between
both of the two speeds and the travel speed on link (14, 11) in the period of
14:00-14:05 are close. It leads to a small change of correlations between two
close-by periods for link (14, 12) in Fig. 4.
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On the other hand, there may be a large positive correlation between the
travel speeds on two neighbouring links separated by several time periods, such
as the correlation 0.42 corresponding to link (14, 12) in period 14:15-14:20 in
this figure. This is because the vehicles that head from node 14 to node 11,
tend to choose the detour via node 12 when they observe that link (14, 11) is
congested and link (14, 12) looks faster. But, there may be a time lag between
the beginning of congestion (or no congestion) on link (14, 11) and the time
when the vehicles observe the congestion (or no congestion) and choose (or not)
to detour through link (14, 12). That is, although the travel speeds on link (14,
11) become high (or low) in period 14:00-14:05, it takes two 5-minute periods
to significantly affect the speeds on link (14, 12).

In summary, there are large and statistically significant correlations among
the link speeds in the road networks, thereby confirming that handling correla-
tions in SSP calculations is meaningful and potentially important.

3. Scenarios generation and solution evaluation

3.1. Scenarios generation

Having the speed data, we need to generate appropriate scenarios for our
calculations. We have chosen to approach the problem as follows. We take our
speed dataset – see Section 4.1 for details – and view its empirical distribution
as the true distribution of speeds. Obviously, the set is actually a sample from
an underlying unknown distribution (or process), but it is beyond the goals of
this paper to discuss the relationship between this empirical distribution and
the true one. In this way we are in line with the literature (Yang and Zhou,
2014; Zockaie et al., 2016; Gu et al., 2019).

The base case will be sampling from the empirical distribution of random
travel speeds. So whatever number of scenarios we need, we shall randomly
pick that number of scenarios from the empirical distribution. We shall refer
to this as RS (random sampling). Our base case does not take the sampling
from estimated parametric distributions and the reasons are as follows. Go-
ing via estimated distributions may appear to provide more stable results, but
that is only the case relative to the estimated distribution. Unless it is known
what distribution family the speed data comes from, estimating a parametric
distribution based on the speed data before sampling amounts to adding noise
to the process. In our speed datasets, we do not know the distribution family
(we do not even know if the data comes from a stable distribution). Even if
we knew the distribution family, it would be very difficult (close to impossible)
to estimate a reliable joint distribution for such a high-dimensional distribution
(our biggest case has 37,500 dependent random speed variables). Moreover, if
it was to be done, the number of speed data points would need to be enormous.
Otherwise, the result would just be noise.

The alternative, which will turn out to be much better, will be based on
explicit scenario generation. We shall denote this SG (scenario generation).
We use the method in Kaut (2014) to generate scenarios of travel speeds. This

8



N
ei

g
h
b
o
u
ri

n
g

li
n
k

F
ig
.
2
.

T
h

e
sp

a
ti

a
l

co
rr

el
a
ti

o
n

s
o
f

li
n

k
(1

4
,

1
1
)

w
it

h
o
th

er
li
n

k
s

in
th

e
ro

a
d

n
et

w
o
rk

in
si

x
ti

m
e

p
er

io
d

s.
F

o
r

th
e

cu
rv

e
o
f

ea
ch

ti
m

e
p

er
io

d
,

th
e

li
n

k
n
u

m
b

er
s

a
re

so
rt

ed
in

th
e

d
ec

re
a
si

n
g

o
rd

er
o
f

sp
a
ti

a
l

co
rr

el
a
ti

o
n

s.
T

h
e

re
d

cr
o
ss

es
re

p
re

se
n
t

th
e

co
rr

el
a
ti

o
n

s
b

et
w

ee
n

li
n

k
(1

4
,

1
1
)

a
n

d
it

s
1
1

n
ei

g
h
b

o
u

ri
n

g
li
n

k
s

(l
in

k
s

sh
a
ri

n
g

n
o
d

e
1
4

o
r

1
1
).

T
h

e
co

rr
el

a
ti

o
n

s
b

et
w

ee
n

th
e

tw
o

h
o
ri

zo
n
ta

l
li
n

es
th

a
t

a
re

p
a
ra

ll
el

w
it

h
th

e
x
-a

x
is

a
re

st
a
ti

st
ic

a
ll
y

in
si

g
n

ifi
ca

n
t

w
it

h
a

si
g
n

ifi
ca

n
ce

le
v
el

o
f

5
%

,
th

e
re

st
a
re

si
g
n

ifi
ca

n
t.

9



* Insignificant

Fig. 3. The temporal correlations of link (14, 11) in six time ranges. The stars in dashed
lines are not significant at the 5% level, the rest are.

Fig. 4. The correlations between travel speeds on link (14, 11) in the first time period (14:00-
14:05) and speeds on its 11 neighbouring links in the 12 time periods between 14:00-15:00.
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method is based on Sklar’s theorem (Sklar, 1973), showing that every multivari-
ate distribution function is fully specified by its marginal distributions and its
copula. A copula is a multivariate cumulative distribution function on the unit
cube [0, 1]d with uniform marginals, which describes the dependence between
the random speed variables. In other words, modelling the dependencies of
travel speeds can be fully decoupled from modelling the marginal distributions.
However, since multivariate copulas are difficult to work with, the method ap-
proximates the multivariate copula by a set of bivariate copulas. By doing so, we
move from one correlation per pair of random variables of travel speeds, which
is what we mostly find in the literature, to one cumulative distribution func-
tion per pair. Clearly, using bivariate copulas is more powerful than using just
correlations, although it cannot model higher-order dependencies and, hence,
the complete dependency. However, this will decrease the numerical complex-
ity from O(Sn) to O(n2S2) (Kaut, 2014). Correlations and bivariate copulas
are closely related since the only parameters needed for normal copulas are the
correlations. However, we are not estimating correlations directly, we are using
the empirical copula as a starting point. We outline the basics of this approach
in Appendix A.

The scenarios for random speed variables in the road network are generated
in two steps: first, the method constructs a “scenario copula” as close to the
empirical speed copula as possible, then the scenarios are transformed to the
target marginal distributions for all random speed variables. Both the copula
and marginal distributions can be specified using parametric families, or taken
directly from provided speed data. In our case, the bi-variate copulas and
marginal distributions are taken directly from the empirical speed distribution.
The method uses randomness as a tie-breaker if a tie appears in an assignment
in the method. The method thus generates the same or very similar scenarios in
two different runs with the same input. This contrasts it with sampling where
this is not the case.

A scenario set is always an approximation of travel speeds in the road net-
work; that is in fact the whole point. Although sampling has very nice limit
properties, the quality of a sampled set of scenarios can be rather bad, even
the scenario means will be off. The scenario sets generated by the method we
use always have means equal to the means of the given distribution, since we
have full control of the discretization of the marginals. As a result, the mean
of travel times on each link and each path are correct in these scenarios. For
all other distributional properties, both RS and SG offer approximations. The
feasibility and effectiveness of using bivariate copulas will be validated by ex-
tensive numerical experiments presented in Sections 4–5. We shall see that SG
outperforms RS by a large margin.

3.2. Evaluation measures and stability

The chosen scenarios can have great impacts on the best solution to rout-
ing problems with spatially and temporally correlated stochastic travel times
(Huang and Gao, 2018). It is thus critical to assess the quality of a set of sce-
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narios. We shall test the qualities when scenarios of travel speeds come from
both RS and SG.

We use two related measures, including relative difference RD and variance
VAR, to assess the stability / quality of the set of scenarios. These two mea-
sures come from the in- and out-of-sample stability tests of Kaut and Wallace
(2007) and work by generating and comparing multiple scenario sets. However,
since the copula-based scenario generation method generates the same or simi-
lar scenario sets with the same inputs in different runs, the common in-sample
stability test is not applicable here. Thus, we use a variant of the standard
approach; to represent the case with S scenarios of travel speeds, we generate
2m + 1 scenario sets with size S −m,S −m + 1, . . . , S, . . . , S + m − 1, S + m,
where m is an integer and set as 4 in our paper, based on tests in Guo et al.
(2019b). For each scenario set of travel speeds, we take the problem at hand
(in our case the SSP problem) and use a solution method from the literature
to find an optimal (or near-optimal) solution. Then, there are 2m + 1 best
solutions XS+i for i ∈ [−m,m]. Calculate the objective value corresponding to
each solution XS+i based on each of these 2m+ 1 scenario sets.

Let F+(XS+i), F
−(XS+i) and σS+i be the maximum, the minimum and

the variance of the 2m + 1 objective values corresponding to XS+i. Then we
calculate RD and VAR of the scenario set of travel speeds as follows:

RD = max
i∈[−m,m]

(
F+(XS+i)− F−(XS+i)

F+(XS+i)
× 100%

)
(1)

VAR = max
i∈[−m,m]

(σS+i) (2)

For a given stability requirement, e.g., RD ≤ 1% orRD ≤ 2%, the minimal S
satisfying the requirement is set as the number of scenarios necessary to achieve
the corresponding objective function stability for the investigated problem.

It is important to understand that by seeing the empirical distribution as
the true distribution, we are favouring RS. With a reasonably large number
of scenarios, relative to the number of outcomes in the empirical distribution,
sampling scenarios from the empirical distribution, without replacement, would
look much better than had we sampled from the underlying distribution (or
alternatively from the empirical distribution with replacement). The scenario
set from sampling without replacement would be “perfect” much faster than
it would had we sampled from the underlying distribution (or sampled with
replacement), while SG would not principally change. We shall see in Sections 4–
5, that even so, SG is much stronger than RS.

Let Xall be the optimal solution to the investigated SSP problem using all
scenarios (i.e., all real speed data). We finally use a measure, ORD, to check
for the performance difference between the optimal solution based on scenarios
generated by SG or RS and the optimal solution Xall based on all available
scenarios. This measure makes sense in our case since we are able to optimally
solve our problem with the full empirical distribution, though at considerable
computational costs. So even though this test cannot be performed generally,
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we use it here since it helps us understand what is going on. We might have that,
for example, RD and VAR both behave well, but the objective function value
converges to the wrong value. Let F all(Xall) be the optimal objective value
when all scenarios are used, and F all(XS+i) be the objective value of solution
XS+i evaluated with all scenarios (that is, the true value). ORD is calculated
by using Eq. (3).

ORD =
1

2m+ 1

m∑
i=−m

(F all(XS+i)− F all(Xall))

F all(Xall)
× 100% ≥ 0 (3)

For SG, this is a genuine issue because the method is not guaranteed to be
unbiased. We shall see, though, that it behaves very well. The lower ORD
is, the less S scenarios produce biased results, provided stability is established.
For RS, the performance difference between F all(XS+i) and F all(Xall) is only
caused by sampling errors since random sampling is unbiased. To reduce the
impacts of uncertainty coming from RS itself, we report the minimum, average
and maximal values of RD and VAR in ten runs, each using 2m + 1 scenario
sets (the same number as for SG), as the results for RS in Sections 4–5.

4. Test case and results in a freeway network

4.1. Case setting

Extensive experiments are conducted to investigate the stability of objective
function evaluations using RS and SG and compare the performances of the two
methods for investigated SSP problems. In these experiments, the SSP problem
instances are defined on the freeway network around Los Angeles as shown in
Fig. 1, and on the 102-day real travel speed data described in Guo et al. (2020).
In the first dataset, the link travel speeds are obtained by processing speed
readings of 3,417 detection stations over 102 days, from May 1 to September
22 in 2017 excluding weekends and holidays. There are 10,512 (438 links ×24
periods) random speed variables and 55,245,816 (10, 512× 10, 511÷ 2) distinct
correlations in each 2-hour time range (i.e., 24 5-minute time periods). When
using the copula-based scenario generation method, we obtain the marginal
distribution of each random speed variable and the 55,245,816 distinct bivariate
copulas of all random variables based on the 102-day speed data.

We use the method proposed by Hall (1986) to calculate the shortest paths
in stochastic spatially and temporally correlated networks. This method is orig-
inally proposed to find the minimum expected travel time path in a stochastic
time-dependent network, and we modify it to find the optimal paths for SSP
problems with different objective functions. Specifically, this method is an im-
provement heuristic, which integrates the branch-and-bound method and the
K-shortest path technique to iteratively look for feasible paths until the optimal
path is obtained. At each iteration k, the method explores a new path Pk that
has the kth minimum possible travel time g(Pk) using a K-shortest path method
– Yen’s method (Yen, 1971) in our paper, and then calculates the actual expected
travel time f(Pk−1) of path Pk−1. f(Pk−1) is the expected value of Pk−1’s travel
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Table 1. Details of the twelve chosen O-D pairs.

No. O-D pair Locations

1 (65, 35) Heavy traffic area to light traffic area with long distance
2 (19, 150) Heavy traffic area to light traffic area with long distance
3 (16, 29) Heavy traffic area to light traffic area with short distance
4 (16, 26) Heavy traffic area to light traffic area with shorter distance
5 (38, 15) Light traffic area to heavy traffic area with long distance
6 (37, 66) Light traffic area to heavy traffic area with long distance
7 (41, 82) Light traffic area to light traffic area with long distance passing heavy traffic area
8 (152, 85) Light traffic area to light traffic area with long distance not passing heavy traffic area
9 (22, 42) Light traffic area to light traffic area with long distance not passing heavy traffic area
10 (57, 6) Light traffic area to light traffic area with short distance passing heavy traffic area
11 (84, 119) Light traffic area to light traffic area with short distance passing heavy traffic area
12 (36, 72) Light traffic area to light traffic area with short distance not passing heavy traffic area

times in all S scenarios. Let τ denote the minimum expected travel time of all
paths evaluated already. We have τ = min{f(P1), . . . , f(Pk−1)}. Through ex-
ploring new paths iteratively, the optimal path with the minimum expected
travel time can be found when meeting τ < g(Pk). The proof is straightfor-
ward. For i ≥ 1, we have g(Pk) ≤ g(Pk+i) and g(Pi) ≤ f(Pi) according to
the K-shortest path method as well as the definitions of g(Pi) and f(Pi). If
τ < g(Pk), τ is less than the minimum possible travel times g(Pk+i) of all paths
not evaluated yet, which is thus less than the actual expected travel time of all
these paths. Consequently, τ is the globally minimum expected travel time and
its corresponding path is the optimal path. The method is a general framework
to solve optimally the fast path problem with time-dependent stochastic travel
times. This framework can be easily modified to solve SSP problems with other
objectives by adapting the method of calculating g(Pk) to different objective
functions. Details of the original and modified methods can be found in Ap-
pendix B. Of course, other shortest path methods can also be used, a survey
of which can be found in Gendreau et al. (2015). However, the shortest path
method is not the focus of this paper.

Sections 4.2–4.4 will present the stability results for RS and SG from different
perspectives, such as the effects of different O-D pairs and different objective
functions, respectively, on the stability of function evaluations. The experiments
are performed on a laptop with an Intel Core i7-8550U CPU @2.00GHz and 16
GB RAM.

4.2. Effects of different origin-destination pairs

We examine and compare the effects of different O-D pairs on the stability
and performances of RS and SG first, based on 32 different O-D pairs. Here
we only present the results of twelve representative O-D pairs on the basis of
different O-D distances and whether the path passes heavy traffic areas. Details
of the chosen O-D pairs are presented in Table 1. The other 20 O-D pairs lead
to similar results, which can be found in the online supplementary documents.

In these experiments, the departure time is set to 8am during the morn-
ing rush hours. The objective function F1 is to minimize a linear combination
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Table 2. ORD(%) values at different S generated by RS and SG for different O-D pairs.

No. O-D pair
S = 10 S = 15 S = 20 S = 25
RS/SG RS/SG RS/SG RS/SG

1 (65, 35) 0.86/0 0.29/0 0.31/0 0.18/0
2 (19, 150) 0.62/0.50 0.43/0.13 0.35/0 0.35/0
3 (16, 29) 0.23/0.26 0.08/0 0.10/0 0/0
4 (16, 26) 0.11/0 0/0 0/0 0/0
5 (38, 15) 0/0 0/0 0/0 0/0
6 (37, 66) 0.61/0 0.30/0 0.28/0 0.36/0
7 (41, 82) 0.38/0.08 0.22/0.07 0.20/0.09 0.16/0.12
8 (152, 85) 1.34/0 0.58/0 0.15/0 0.13/0
9 (22, 42) 0.07/0 0/0 0/0 0/0
10 (57, 6) 0.23/0 0.26/0 0/0 0/0
11 (84, 119) 0.56/0 0.36/0 0.38/0 0.33/0
12 (36, 72) 0.32/0 0.08/0 0/0 0/0

of mean (µ) and standard deviation (σ) of path travel times, and this prob-
lem is referred as the mean–standard deviation shortest path problem (Zhang
et al., 2017). Let θ (generally larger than zero) denote a specified weight factor
that represents the risk aversion to travel time variability, T s the travel time
(unit: second) of the travel path in the sth scenario, and S the total number of
scenarios. This objective (Objective Function 1) is formulated as follows.

F1 = µ+ θ ·σ (4)

with µ =

∑S

s=1
T s

S and σ =

√∑S

s=1
(T s−µ)2

S .

Fig. 5 compares RDs and VARs for the twelve O-D pairs when θ is set to
a typical value 1.27 (Noland et al., 1998). For each O-D pair, the four types of
hollow (solid) markers represent the results of SG (RS) at four different values
of S. Specifically, the three markers on each vertical line, from top to bottom,
represent the maximum, the mean, and the minimum of RDs or VARs generated
by RS in ten runs at a certain S. The numerical values of RDs and V ARs in
Fig. 5 are presented in Table C.1 of Appendix C. Table 2 presents the ORD
results. Fig. 6 shows the number of scenarios required (SRD) for different O-D
pairs to achieve the specified RD goals for both methods. For RS, the number
of scenarios needed is calculated based on the mean of RD values in ten runs
(this also favours RS as compared to SG, since in a given setting one could end
up with any of the ten cases without knowing the actual quality of the scenarios
used). We let S start from 10 and increase in steps of 5.

It can be found from Figs. 5-6 and Table 2 that:

1. Whichever method is used, the RDs and VARs reduce with the increase
of S on the whole, although small fluctuations exist for some O-D pairs.
These fluctuations are reasonable and acceptable, and are caused by the
randomness or heuristic nature of RS and SG.
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Fig. 6. Number of scenarios required by RS and SG for different O-D pairs and different
stability levels.

2. For all O-D pairs, SG generates much smaller RDs and VARs than RS,
even for its minimal RDs and VARs. Taking O-D pair (37, 66) as an
example, when S is equal to 10, the RD and VAR generated by SG are
only about 9.23% and 0.72% of the minimal RD and VAR generated by
RS. That is, with the same S (when it is not too large), the scenario set
generated by SG leads to much more stable performance than RS for all
investigated O-D pairs.

3. We see a few cases of ORD being positive for SG. However, except for (41,
82), it becomes zero as S increases within Table 2. For the O-D pair (41,
82), ORD goes to zero when S reaches 55 (not shown in the table). Hence,
we see that SG does not produce biased results in our experiments, and
the variation is caused by a not-yet-stable solution. We see throughout
that ORD is much larger for RS than for SG.

4. As shown in Fig. 6, to achieve a stability level of 2% on objective F1, SG
needs only 25 scenarios for all O-D pairs while the number of scenarios
required by RS ranges from 45 to 95 (those are very large numbers as their
maximum is 102).

4.3. Results of six objective functions

We further examine the effects of different objective functions on the perfor-
mances of RS and SG by comparing these two methods based on six commonly
used objective functions for all investigated O-D pairs. The departure time is
set at 8am. The first objective is F1 formulated in Section 4.2 and the other five
are described below. Objective functions F1 and F6 are travel time reliability
criteria adopted in the literature.
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Objective 2: Minimize the expected travel time F2.

F2 =

∑S
s=1 T

s

S
(5)

Objective 3: Minimize the expected carbon emission F3. Let es denote the
carbon emission (unit: gram) of the travel path in the sth scenario. The value
es is calculated using the well-known MEET model (Hickman et al., 1999) with
parameters for a gross vehicle weight of 3.5-7.5 tons, i.e., parameters K, a, b, c,
d, e, and f are equal to 110, 0, 0, 0.000375, 8702, 0 and 0, respectively. N is
the number of nodes in the network, and M is the number of time periods, with
vsijt representing the travel speed sample on link (i, j) in the tth time period in

the sth scenario, and dij is the length of link (i, j). If the vehicle travels from
node i to node j directly in time period t, xijt is equal to 1, otherwise it is 0.

F3 =

∑S
s=1 (es/1000)

S
(6)

with

es=

N∑
i=1

N∑
j=1

M∑
t=1

((K+a·vsijt+b·vsijt2+c·vsijt3+d/vsijt+e/v
s
ijt

2+f/vsijt
3)·xijt)·dij

(7)
Objective 4: Minimize the expected tardiness F4. Let Ls represent the

tardiness in the sth scenario, with D the given due time of arriving at the
destination node and Dp the departure time from the origin node.

F4 =

∑S
s=1 L

s

S
(8)

with Ls = max(Dp + T s −D, 0).
Objective 5: Minimize the expected sum of tardiness and earliness F5. Here

W s represents the earliness in the sth scenario, while E is the given earliest time
of arriving at the destination node.

F5 =

∑S
s=1 (Ls +W s)

S
(9)

with Ls = max(Dp + T s −D, 0) , and W s = max(E − T s −Dp, 0).
Objective 6: Minimize the travel time budget F6 for a specified on-time

arrival probability α, which is referred as the α-reliable path problem (Chen
et al., 2018) or the minimal percentile travel time path problem (Yang and
Zhou, 2017). A risk-averse decision-maker would prefer a larger α for a more
reliable path.

F6 = T (10)

s.t.
Pr{T s ≤ T} ≥ α (11)
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Specifically, based on discrete scenarios, the calculation of F6 for a path is
conducted as follows. First, the travel time T s in each scenario is calculated and
ranked in an increasing sequence as T s

′
1 ≤ T s

′
2 ≤ . . . ≤ T s

′
S . Then, the value

of F6 is equal to T s
′
, where s′ = min{s′|∑s′

i=1 pi ≥ α} and pi is the possibility

of ith scenario. That is, the value of F6 is equal to the travel time in the s′
th

scenario (Yang and Zhou, 2017).
To compare the results for different objective functions, we take O-D pair

(65, 35) and departure time Dp at 8am as an example. Fig. 7 shows the ratios of
RD and VAR generated by RS and SG for different S. The ratio of RD (VAR)
is defined as the RDs (VARs) generated by RS divided by the corresponding
RDs (VARs) generated by SG. The three markers on each vertical line, from
top to bottom, represent the maximum, the mean, and the minimum of RD or
VAR ratios in ten runs of RS at a certain S. The numerical values of RDs and
VARs in Fig. 7 are presented in Table C.2 of Appendix C. Fig. 8 presents the
number of scenarios required in each case. We set θ to 1 in F1, due time D to
8.88 (i.e., 8:52:48 in HH:MM:SS format) in F4, time window (E, D) to (8.78,
8.87) in F5, and on-time arrival probability α to 90% in F6. We set θ = 1 in F1
so that the results of F1 here are consistent with the results of different θ shown
in Table D.1, which corresponds to the experiments of studying the effects of
different θ values in Section 4.4. Other O-D pairs produce similar results, which
are detailed in the online supplementary documents.

It can be found from Figs. 7-8 that:

1. The objective function matters for the ratios for RD and VAR. We see
that the ratios can be substantial for many objective functions, which in-
dicates that SG produces much more stable results than RS. The observed
values across different objective functions are not directly comparable, but
still indicates well the dangers of using pure sampling.

2. To achieve specified RD goals, different objective functions require differ-
ent numbers of scenarios. For objective functions F2 and F3 that calculate
means, to achieve RD ≤ 1%, SG needs only 10 scenarios while RS requires
more than or equal to 75 scenarios, and more similar results can be found
in Appendix C. For the objective functions F4 and F5 that consider ear-
liness and / or tardiness, both SG and RS need many scenarios, however,
SG needs fewer scenarios to achieve RD ≤ 1% than RS needs to achieves
more loose RD ≤ 5%.

4.4. Effects of parameters in different objective functions

Since the objective functions F1, F4, F5 and F6 are directly affected by
their parameter values, we now study the effects of these parameters on RD,
VAR and ORD results. We conduct experiments for all O-D pairs. For each
O-D pair, we customize the values of parameters to investigate as many settings
as possible, and then obtain some general observations from the experimental
results.

Take O-D pair (65, 35) as an example. The details of the experimental
results are shown in Appendix D. We have the following observations:
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Fig. 8. Number of scenarios required by RS and SG for O-D pair (65, 35), when different
objective functions and different stability levels are considered.

Table 3. Ranges of the ratio of RD and VAR generated by RS and SG with different
parameters for O-D pair (65, 35) and S = 10.

F1 F4 F5 F6

Ratio of RD [8.70, 20.51] [2.25, 11.93] [1.44, 11.72] [1.29, 4.64]
Ratio of VAR [74.90, 393.06] [105.82, 417.60] [24.60, 444.80] [1.36, 27.25]

1. RD and VAR generated by RS are much larger than those generated by
SG throughout. This can be seen from Table 3, which presents the ranges
of the ratio of RD and VAR under different parameters for O-D pair (65,
35) and S = 10. In the table, the minimal ratios of RD and VAR of all
objective functions are larger than 1. This indicates that the scenarios
generated by SG have more stable performance than those generated by
RS for all these objective functions and parameters.

2. The values of RD and VAR can vary greatly in cases with different pa-
rameters. The results are not too surprising. When the objective is some
kind of expectation, variation is much smaller than when the objective
function depends on extreme values of the random variables. When ex-
treme values are important, both methods, but particularly RS, will be
very sensitive to what happens to be the extreme values in a scenario set.
Detailed analyses can be found in Appendix D.

3. In most cases, we have ORD = 0. When it is not the case in the tables,
the reason is that more scenarios are needed for stability. Eventually, all
ORDs go to zero in our tests. In particular, that means that we never
observe bias for SG — which generally is a possibility.
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5. Test case from an urban road network and result summary

To examine the stability / quality of objective function evaluations of RS
and SG and compare the performances of these two methods for the investigated
SSP problems, Section 4 has presented extensive experimental and comparison
results in terms of different O-D pairs and different objective functions. The
findings aforementioned come from a freeway network. We further conduct
similar experiments based on a link travel speed dataset from a larger urban
road network (Guo et al., 2020). The number of random speed variables in the
urban road network is 37,500 (1250 links ×30 periods), which is more than
three times that in the freeway network used. The new experiments confirm
that SG strongly outperforms RS in terms of stability for different O-D pairs
and different objective functions. Details of experimental results from the urban
network can be found in Appendix E.

Based on the results from the two road networks, we can draw the findings
and have the managerial insights as follows.

1. SG strongly outperforms RS in terms of stability, i.e., in terms of RD
and VAR. It is better to use the SG method to generate scenarios for the
SSPs with spatially and temporally correlated travel times in real-world
applications.

2. Different O-D pairs, as well as different objective functions and parameters
could have large effects on the stability of objective function evaluations.
This implies that a fixed number of scenarios for all cases, which is a
common practice in the literature, would lead to unstable evaluations.
Practitioners need to customize scenarios according to the characteristics
of the SSPs.

3. For objective functions F2 and F3, SG needs only 10 scenarios for almost
all cases to achieve an objective-function evaluation stability of 1% while
RS usually needs much more in the freeway network. Therefore, when
using SG, we can use the same number of scenarios (e.g., S = 10 in
our cases) to handle the SSPs for all O-D pairs under F2 and F3 in
this network. To determine the number of scenarios required, we could
generally start with a small number (e.g., S = 10) of scenarios in the
stability test and further increase it with a fixed step size (e.g., 5) to
achieve a desired stability level.

4. For the other objective functions, sometimes much more scenarios are
required to achieve a stability level of 1% because different parameter
values could have a great impact on the RD results. However, SG always
needs fewer scenarios than RS. In real-world applications, it is critical to
generate scenarios separately for each case of the objective functions F1
and F4−F6, and we recommend starting with a large number of scenarios
for these objective functions in the stability test.

5. The scenarios generated by SG are unbiased and the unbiased results
(ORD = 0) can be achieved by a very small scenario size (e.g., S=10 for
most cases) in the freeway network. This indicates that the feasibility and
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effectiveness of using bivariate copulas to replace the multivariate copulas
in scenario generation.

6. The urban road network leads to larger RD, VAR and ORD values than
the freeway network does, which indicates that the number of scenarios
required for the SSPs is larger in complicated urban road networks. The
reason is simple. Compared with the freeway network, urban road net-
works have a more complicated network topology, shorter road links, and
higher speed variance. They are thus characterized by higher correlations
of travel speeds in both space and time. This could affect the number of
scenarios required for the SSPs in urban road networks. But even so, SG
always outperforms RS with a solid margin.

6. Conclusions

This paper addresses SSP problems with spatially and temporally correlated
travel speeds based on real data from a freeway network and an urban road
network. These problems involve correlated and very high-dimensional random
speed variables.

We observe realistic stochasticity of travel speeds in a freeway network with
10,512 correlated random variables and 55,245,816 distinct correlations (or dis-
tinct bi-variate copulas). Taking a road link as an example, we investigate
the spatial, temporal and spatio-temporal correlations of the travel speeds on
separate links and analyse the corresponding reasons.

We then present two methods for generating scenarios for these high-dimen-
sional SSP problems based on realistic stochasticity of travel speeds, one a
copula-based scenario generation (SG) method and one a random sampling (RS)
method. Extensive experiments are conducted to compare the performances of
the two methods by examining the effects of different origin-destination pairs
and different objective functions. In terms of two performance measures (RD
and VAR), we show that SG needs much fewer scenarios than RS to achieve the
same stability, typically about 6-10 times less for a stability level of 1% on objec-
tive function evaluations in the freeway network, despite the fact that we made
several simplifying assumptions, all favoring RS. So, our main conclusion is that
it is crucial how scenarios are generated, and in particular that random sampling
is not a good idea unless the problem is small or execution time is of little impor-
tance. The suggested way of generating scenarios requires offline computations.
We typically needed 28 minutes for 10 scenarios, up to 50 minutes for 25 scenar-
ios when we had 10,512 random variables. The scenarios can then be reused as
long as the map and the traffic intensity do not change. Our findings are help-
ful to handle effectively SSP problems with spatially and temporally correlated
travel speeds in real-world applications where both computation efficiency and
optimization performances are important. Typical application scenarios include
path selection in emergency rescue as well as on-demand and autonomous mo-
bility environment. Moreover, using our method, the existing SSP algorithms
based on scenarios without consideration of correlations can be easily extended
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to handle complex spatio-temporal correlations of link travel speeds in real road
networks, which advances the SSP research.

This research is conducted in a freeway network and a small-scale urban
road network. Our future research will improve the scenario generation method
for applications in large urban street networks with higher speed variances and
more path choices, and further consider partial correlations and partial autocor-
relations. Another interesting direction is to investigate the effects of different
correlations and / or complex multivariate copulas on the scenario performance
and the solutions to SSP problems. Besides, it is also promising to use spatio-
temporal graph neural networks to capture the spatial and temporal correlations
of random speed variables, and develop effective methods to solve the SSP prob-
lems with spatially and temporally correlated travel speeds in the future.
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Appendix A: Scenario generation method

This appendix outlines the major ideas behind the scenario generation method
used in this paper. For more details, see Kaut (2014). The starting point is
Sklar’s theorem (Sklar, 1973), which shows that any distribution can be sepa-
rated into marginal distributions and a copula, where the latter models how the
random variables are connected, without a reference to the marginals. Hence,
starting from an empirical distribution, we decide how many scenarios we want
–S – and based on that create a discrete marginal distribution for each random
variable involved, with that number of outcomes. Discretizing a one-dimensional
distribution is straightforward, and we do not discuss that here. In particular,
this allows us make sure that the expected value of each random variable is the
same as in the empirical distribution.

If we have M sample points, we also have M different values in the marginal
distribution for each of the N random variables. In the left part of Fig. A.1 we
show an example of an empirical distribution with 100 points over approximately
[−2, 2]× [−2, 2].

The next step is to remove the actual values for these points and only look
at the ranks, i.e., each point is described by a pair (a, b) showing that a certain
point contains the a’th lowest value of the first random variable and the b’th
lowest of the other. So with 100 points, both a and b will take on all values from
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Fig. A.1. Example empirical distribution and scaled ranks for 100 sample points.

1 to 100 exactly once. Since copulas are defined on [0, 1] we scale the ranks just
found on [1, 100]× [1, 100] down to [0, 1]× [0, 1]. This gives us the right part of
Fig. A.1. Notice that the right part is not a linear scaling of the left part, but
rather of the ranks corresponding to the left part.

The point of the scenario generation procedure is now to find a copula for
the scenarios, which is as close as possible to the the right part of Fig. A.1. We
do that by minimizing a certain distance between the cumulative probability
distribution function (cdf) for the copula in Fig. A.1 and the cdf for the copula
of our scenarios. Assume we want five scenarios. We then take the [0, 1]× [0, 1]
in the right part of Fig. A.1 and create a five by five grid instead also over
[0, 1]× [0, 1]. Then we find the proportion of points in each of the resulting 25
squares, forming a discrete bivariate distribution, see (a) and (b) in Fig. A.2.
Part (a) corresponds to the right part of Fig. A.1, but with the 5 × 5 grid
put on top. Part (b) then simply shows the result of this counting, given in
proportions / probabilities. By accumulating the probabilities, we get the cdf
of that distribution, shown in the last part of Fig. A.2, which serves as the target
cdf for the scenario copula.

The copula we seek will then correspond to a rank over the 5 × 5 matrix
(i.e., one dot in each row and one in each column) so that its cdf is as close as
possible to the one given. For the distance, we use the sum of absolute values
of the differences in each section of the grid, as shown in Fig. A.3. There, the
distance is equal to the sum of grid values in the second part, i.e., 0.81.

In higher dimensions, we do not use the multi-variate copula, as its distance
is difficult to compute. Instead, we use the heuristic from Kaut (2014), which
works on bi-variate copulas. The heuristic adds one margin at a time and
assigns the ranks consecutively to scenarios with the smallest distance in the
copulas connected the new margin to the already assigned ones—see Fig. A.4
for a pseudo-code of this procedure (Kaut, 2014).

Calculation of the distance δkjs on line 5 of the algorithm is illustrated in
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Fig. A.2. Target distribution for the scenario copula.
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Fig. A.3. Scenario cdf and its distance from the target from Fig. A.2.
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1: S ← {1, . . . , S}; δ∗ ←∞ . . . . . . . . . . . . . . . . . . . . . . . . . . initializations
2: for j ∈ {1, . . . , S} do . . . . . . . . . . . . . . . . . . . . . . loop through all ranks
3: for s ∈ S do . . . . . . . . . . . . . . . . . . . loop through unused scenarios
4: for k ∈ {1, . . . ,m}: exists copula (k,m+ 1) do
5: calculate distance δkjs . . . . . . . . . . . . . for copula (k,m+ 1)
6: end for
7: δs ←

∑m
k=1 δ

k
js . . . . . . . . . . . . . . .dist. of putting j into scen. s

8: if δs < δ∗ then . . . . . . . . . . . . . . . . . . . . . . new best assignment
9: s∗ ← s; δ∗ ← δs

10: end if
11: end for
12: rm+1

j ← s∗ . . . . . . . . . . . . . . . . . . . . . . . assign rank j to scenario s∗

13: S ← S \ {s∗} . . . . . . . . . . . . . . . . . . . . . . . . . . mark scen. s∗ as used
14: end for

Fig. A.4. Step m of the multivariate heuristic: adding margin m + 1 to the set of already
generated margins 1, . . . ,m. There, δkjs is the deviation in copula (k,m + 1), caused by

assigning rank j (of margin m+ 1) to scenario s.

Fig. A.5, for copula used in the previous figures. Since this is a bi-variate
copula, we have m = 1 (connecting second margin to the first one) and k = 1
is the only choice on line 4 of the algorithm. The figure shows assignment of
the third rank (j = 3), with the first rank already assigned to scenario 1 and
second rank to scenario 3—so S = {2, 4, 5}; in particular, the figure shows the
distance of assigning rank 3 into scenario 4, i.e., δ13,4.

Using only bi-variate copulas might seem limiting, but it is comparable to
what is often done in the literature when looking at dependencies – looking
at just correlations – and in fact is stronger than that as it picks up more
information about the shape of the distribution than by using just correlations.

At this point, we have scenarios for the copula, instead of the target distri-
bution. In particular, the margins consist of permutations of the set {1, . . . , S}.
To get the desired distribution, we need to scale the values into the (0, 1) in-
terval and then apply the inverse of the marginal cdf. For this, we divide (0, 1)
into S subintervals and apply the inverse cdf on their midpoints. Hence, the
scenarios consists of conditional medians of the subintervals,

xsi = F−1i

(ris − 0.5

S

)
,

where rsi is the rank of margin i in scenario s, and Fi is the margin’s cdf. In case
of a discrete cdf, such as the empirical cdf when using historical data, we follow
Kaut (2014) and use cubic splines to smooth the cdf and make it invertible.

It may seem that this is just a complicated way to combine or accumulate
outcomes in the empirical distribution. But it is not. By going from the left to
the right part of Fig. A.1, and then using Sklar’s theorem, we can use any avail-
able method to discretize the marginals, instead of letting them be a somewhat
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Fig. A.5. Calculation of distance δkjs from Fig. A.4, for the third margin from Fig. A.3.
Note that the figure has ranks of margin 2 on x-axis and scenarios on y-axis, so its columns
correspond to rows in the previous figures.

noisy result of the scenario generation procedure. In sampling, for example,
a marginal distributions will amount to S sampled values, which for small S
– which is what we need – can be rather noisy, even though, as the sample
size increases the sampled distribution gets arbitrarily good. This is why this
copula-based scenario generation is so much better than random sampling.
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Table B.1. Framework of Hall’s method (1986).

Step No. DO

1 Set k = 1, τ =∞
Find the shortest path P1 with the minimum possible objective value g(P1)

2 Set k = k + 1
Calculate the actual objective value f(Pk−1) of Pk−1

3 Find the path Pk with the kth minimum possible objective value g(Pk)
4 If f(Pk−1) < τ

τ = f(Pk−1)
P ∗ = Pk−1

If τ ≥ g(Pk)
Return to Step 2

If τ < g(Pk)
τ is the optimal objective value
P ∗ is the optimal path
Stop and return τ , P ∗

Appendix B. Stochastic shortest path solving method

We use the method proposed by Hall (1986) to handle the SSP problems with
different objective functions in stochastic spatially and temporally correlated
networks. This method is originally proposed to find the minimal expected
travel time path in a stochastic time-dependent network, and we modify it to
find the optimal paths for our SSP problems with different objective functions.

Table B.1 shows the framework of Hall’s method. At each iteration k, a
new solution Pk (i.e., the path with the kth smallest possible objective value)
is found using a K-shortest path method – Yen’s method (Yen, 1971) in our
paper, and the actual objective value (τ) of the best possible path is updated. τ
is the minimum of objective values of all k−1 paths evaluated already. That is,
τ = min{f(P1), . . . , f(Pk−1)}. Note that the method probably needs to explore
and evaluate a large number of solutions to get the optimal one. However, the
efficiency of this method is not the concern of this paper.

Next, we verify the optimality of the framework of Hall’s method. As shown
in Table B.1, g(Pk) is the minimum possible objective value of path Pk, and
f(Pk) is the actual objective value of path Pk. We have g(Pk) ≤ f(Pk). When
τ < g(Pm) at iteration m, we have τ < g(Pm) ≤ f(Pm), that is, τ < f(Pm).
Since g(Pk) ≤ g(Pk+i) for all i ≥ 1, we have τ < g(Pm) ≤ g(Pm+i) ≤ f(Pm+i).
That is, τ < f(Pm+i) for all i ≥ 1. Therefore, τ is not only the minimum
objective value of all evaluated paths, but also less than the objective values
of all unevaluated paths Pm+i (i ≥ 0). τ is thus the global optimal objective
value.

In summary, to get the optimal path in this framework, two conditions need
to be satisfied: (1) g(Pk) ≤ g(Pk+1) and (2) g(Pk) ≤ f(Pk). The first condition
can be easily satisfied by using the Yen’s method (Yen, 1971) to find the K-
shortest paths optimally in a static and deterministic network. To meet the
second condition, the key is to set the minimum possible objective value on
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each road link, which has not been illustrated clearly in Hall’s paper (1986).
We set it for our SSP problems with different objective functions as follows.
Since the method for F2 is the basis for other objective functions, we introduce
it first.

F2: Minimize the expected travel time
We first find the maximum speed vmaxij on each link (i, j) over all 24 time pe-

riods (2-hour time range) and all S scenarios, and then set the value of dij/v
max
ij

as the minimum possible travel time on link (i, j).
Because vmaxij is the highest possible speed on link (i, j), dij/v

max
ij must be

less than or equal to the travel time on this link in any time periods and any
scenarios. Therefore, the sum g(Pk) of the minimum possible travel time on all
links of path Pk must be less than or equal to the expected travel time f(Pk)
according to Eq. (5). This is, condition (2) holds.

F1: Minimize a linear combination of mean (µ) and standard de-
viation (σ) of path travel times

According to Eqs. (4)-(5), for path Pk, its objective value of F1 must be
greater than or equal to the objective value of F2 since θ is generally equal to
or bigger than 0. Therefore, we can directly use the minimum possible travel
time for F2 as the minimum possible objective value for F1, which guarantees
condition (2) holds.

F3: Minimize the expected carbon emission
The minimum carbon emission value eminij over all time periods and all sce-

narios is set as the minimum possible carbon emission on the link. According
to Eq. (6), the sum g(Pk) of the values of eminij on all links of path Pk must be

less than or equal to the expected carbon emission f(Pk) because eminij is less
than or equal to the carbon emission values on link (i, j) in any time periods
and any scenarios. Condition (2) holds.

F4: Minimize the expected tardiness
To get the minimum possible tardiness for path Pk, the vehicle must travel

each link at the maximum speed, which is consistent with objective function F2.
Therefore, we use the same method for F2 to get the minimum possible travel
time Tmin(Pk) of path Pk, and then the minimum possible tardiness g(Pk) is
set as max(Dp + Tmin(Pk)−D, 0).

According to Eq. (8), g(Pk) must be less than or equal to the expected
tardiness f(Pk) because Tmin(Pk) is the minimum possible travel time of path
Pk, as stated for F2. Condition (2) holds.

F5: Minimize the expected sum of tardiness and earliness
Here, we need to get the minimum possible tardiness and earliness respec-

tively. The minimum possible tardiness Lmin(Pk) of path Pk is calculated using
the same method for objective function F4. The minimum possible earliness
Wmin(Pk) of path Pk can always be zero theoretically, as the vehicle could avoid
earliness by lowering down the travel speed or temporary parking. Therefore,
we set the Wmin(Pk) of path Pk as zero.

The sum g(Pk) of Lmin(Pk) and Wmin(Pk) must be less than or equal to
the expected tardiness and earliness f(Pk) according to Eq. (9). Condition (2)
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Table C.1. Numerical values of RD and VAR results shown in Fig. 5.

No. O-D pair
S = 10 S = 15 S = 20 S = 25
RS/SG RS/SG RS/SG RS/SG

RD(%)

1 (65, 35) (7.28, 9.95, 15.94)/0.74 (3.64, 6.87, 10.00)/0.78 (3.33, 5.21, 7.42)/0.61 (3.44, 4.21, 5.85)/0.98
2 (19, 150) (3.35, 5.66, 6.59)/1.92 (3.45, 5.54, 6.69)/1.77 (2.84, 3.88, 5.48)/0.96 (1.84, 3.91, 4.94)/0.85
3 (16, 29) (4.26, 7.12, 10.60)/2.46 (3.97, 5.03, 5.63)/2.46 (3.50, 4.50, 5.71)/2.59 (1.48, 3.08, 4.74)/1.79
4 (16, 26) (5.54, 8.38, 15.58)/2.39 (3.37, 5.65, 7.68)/2.45 (3.49, 4.87, 6.54)/2.22 (2.15, 3.73, 5.21)/1.94
5 (38, 15) (11.33, 16.23, 23.35)/1.63 (9.55, 14.66, 17.46)/1.43 (8.18, 10.75, 15.55)/1.17 (5.02, 9.23, 11.48)/1.53
6 (37, 66) (9.58, 14.95, 19.85)/0.88 (7.61, 11.05, 13.35)/1.24 (5.21, 9.59, 11.5)/1.64 (5.58, 8.52, 10.22)/1.70
7 (41, 82) (8.58, 11.42, 14.77)/2.66 (6.91, 9.31, 12.65)/2.38 (5.53, 7.94, 11.99)/1.62 (4.46, 6.79, 8.62)/1.03
8 (152, 85) (6.54, 12.22, 17.55)/1.61 (3.78, 10.40, 15.40)/1.44 (3.84, 8.93, 12.98)/1.28 (2.55, 6.64, 8.38)/1.42
9 (22, 42) (5.61, 8.45, 11.94)/1.23 (3.15, 6.03, 8.74)/2.18 (4.22, 5.72, 8.20)/1.63 (2.21, 4.25, 6.30)/0.89
10 (57, 6) (6.30, 9.67, 18.09)/1.67 (4.02, 8.04, 20.14)/1.73 (3.37, 5.36, 7.64)/1.51 (2.97, 4.08, 5.20)/1.31
11 (84, 119) (9.20, 15.00, 20.70)/2.48 (5.46, 11.67, 15.24)/1.73 (6.43, 9.35, 12.30)/1.89 (4.19, 6.42, 9.98)/2.30
12 (36, 72) (6.36, 10.44, 15.53)/1.61 (6.13, 8.35, 11.69)/1.55 (3.86, 6.55, 11.45)/0.96 (3.20, 6.23, 11.65)/0.82

VAR

1 (65, 35) (6047, 13658, 30847)/70 (1724, 6916, 12871)/91 (1319, 4156, 11125)/49 (1496, 2589, 6572)/122
2 (19, 150) (1464, 5565, 9605)/545 (2222, 4826, 6721)/507 (1426, 2684, 4998)/131 (669, 2425, 3672)/86
3 (16, 29) (566, 1791, 3259)/237 (544, 894, 1278)/214 (322, 612, 866)/244 (73, 348, 770)/90
4 (16, 26) (503, 1445, 4618)/74 (155, 532, 1023)/76 (215, 428, 820)/82 (88, 212, 358)/53
5 (38, 15) (28282, 67444, 120184)/638 (27798, 50188, 65956)/590 (14387, 27499, 47051)/418 (6297, 20887, 35141)/402
6 (37, 66) (23704, 54701, 88716)/170 (13921, 26106, 34894)/340 (6539, 20393, 34486)/524 (4230, 20013, 30885)/428
7 (41, 82) (20006, 49856, 78798)/2421 (17655, 32707, 62801)/1823 (10448, 23981, 44819)/752 (4974, 18188, 30921)/382
8 (152, 85) (11272, 52525, 98880)/717 (4353, 39106, 83156)/686 (4209, 25416, 47481)/404 (1597, 18596, 33372)/468
9 (22, 42) (4262, 12487, 26860)/187 (1933, 7259, 13977)/636 (2471, 5722, 10292)/415 (972, 2866, 4955)/154
10 (57, 6) (4570, 14668, 59985)/403 (2057, 12507, 61605)/373 (1193, 3377, 5210)/287 (1229, 1888, 2677)/174
11 (84, 119) (5180, 12358, 23734)/255 (1402, 6553, 11332)/144 (2195, 4051, 7619)/153 (903, 2184, 4074)/240
12 (36, 72) (5466, 14625, 25113)/357 (4642, 10547, 19070)/322 (1881, 6426, 13282)/123 (1123, 5918, 18681)/83

holds.
F6: Minimize the travel time budget for a specified on-time arrival

probability α
As stated in Section 4.3, the objective value of F6 equals to the vehicle’s

travel time Ts in one of the S scenarios. Here, we use the minimum possi-
ble travel time generated for objective function F2 as the minimum possible
objective value for F6 as well.

According to Eq. (10), the sum g(Pk) of the minimum possible travel times
on all links in path Pk must be less than or equal to the travel time in any
scenarios f(Pk) since the minimum possible travel time dij/v

max
ij on link (i, j)

is less than or equal to the travel time on link (i, j) over all time periods and
all S scenarios. Condition (2) holds.

Appendix C. Supplementary result

In this appendix, Tables C.1 and C.2 show the corresponding numerical
values of RD and VAR results shown in Figs. 5 and 7, respectively. In these
tables, the results generated by RS and SG for each S are separated by a slash.
The three values for RS in each cell represent the minimum, the mean, and
the maximum of RDs and VARs in ten runs at S. Given different O-D pairs,
Tables C.3 and C.4 present the number of scenarios required to achieve the
specified RD goals for both methods under objective functions F2 and F3,
respectively.
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Table C.2. Numerical values of RD and VAR results shown in Fig. 7.

Objective S = 10 S = 15 S = 20 S = 25
function RS/SG RS/SG RS/SG RS/SG

RD(%)

F1 (4.52, 7.7, 11.64)/0.60 (2.51, 6.00, 11.11)/0.64 (2.44, 4.30, 5.75)/0.52 (2.26, 3.56, 5.49)/0.81
F2 (4.62, 6.20, 9.73)/0.44 (3.06, 4.25, 5.47)/0.12 (2.44, 3.14, 3.89)/0.23 (1.18, 2.42, 3.42)/0.18
F3 (4.70, 5.93, 7.03)/0.85 (2.66, 4.02, 5.71)/0.40 (1.81, 3.51, 5.10)/0.36 (2.49, 3.19, 3.77)/0.15
F4 (66.33, 82.42, 100)/4.96 (50.18, 68.31, 89.49)/1.40 (49.43, 61.14, 77.11)/2.52 (44.38, 54.41, 64.62)/2.03
F5 (42.61, 53.2, 63.03)/4.45 (24.33, 44.11, 67.52)/1.25 (31.15, 38.53, 43.61)/2.26 (24.58, 29.63, 37.58)/1.82
F6 (7.09, 13.25, 18.62)/4.67 (6.33, 8.88, 14.13)/4.88 (6.02, 7.31, 11.62)/3.87 (4.66, 6.35, 8.43)/4.33

VAR

F1 (2356, 8720, 19638)/46 (953, 6065, 18310)/60 (741, 2258, 3339)/35 (601, 1908, 4068)/81
F2 (2365, 4831, 9820)/16 (1153, 2163, 3662)/2 (791, 1206, 1681)/6 (132, 751, 1204)/4
F3 (0.39, 0.73, 1.11)/0.01 (0.12, 0.38, 0.67)/0 (0.07, 0.25, 0.45)/0 (0.13, 0.22, 0.28)/0
F4 (784, 2252, 4859)/16 (316, 1263, 3017)/2 (282, 759, 1530)/6 (250, 475, 824)/4
F5 (2678, 4448, 7732)/16 (590, 1806, 3897)/2 (703, 1369, 2879)/6 (371, 770, 1371)/4
F6 (6558, 31329, 55924)/3430 (5172, 15713, 41423)/4022 (3622, 8377, 20615)/1562 (2438, 6545, 16439)/2135

Table C.3. Number of scenarios required for different O-D pairs under F2.

No. O-D pair
RD ≤ 1% RD ≤ 2% RD ≤ 5%

RS/SG RS/SG RS/SG

1 (65, 35) 70/10 45/10 15/10
2 (19, 150) 45/10 25/10 10/10
3 (16, 29) 90/10 45/10 10/10
4 (16, 26) 85/10 50/10 20/10
5 (38, 15) 98/10 75/10 45/10
6 (37, 66) 90/10 60/10 25/10
7 (41, 82) 90/15 65/10 25/10
8 (152, 85) 95/10 65/10 20/10
9 (22, 42) 90/10 45/10 10/10
10 (57, 6) 90/15 55/10 25/10
11 (84, 119) 98/15 85/10 45/10
12 (36, 72) 98/10 55/10 15/10

Table C.4. Number of scenarios required for different O-D pairs under F3.

No. O-D pair
RD ≤ 1% RD ≤ 2% RD ≤ 5%

RS/SG RS/SG RS/SG

1 (65, 35) 80/10 45/10 15/10
2 (19, 150) 65/10 25/10 10/10
3 (16, 29) 70/10 40/10 10/10
4 (16, 26) 75/10 35/10 10/10
5 (38, 15) 98/10 98/10 25/10
6 (37, 66) 98/10 98/10 15/10
7 (41, 82) 80/10 50/10 15/10
8 (152, 85) 75/10 50/10 15/10
9 (22, 42) 98/10 98/10 10/10
10 (57, 6) 98/10 98/10 20/10
11 (84, 119) 85/15 55/10 20/10
12 (36, 72) 70/10 30/10 10/10
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Appendix D. Detailed results of O-D pair (65, 35) in the freeway
network

In Section 4.4, we use O-D pair (65, 35) as an example to describe the
effects of different parameters in the objective functions on RD, VAR, and
ORD results. The detailed results of O-D pair (65, 35) under different objective
functions are shown in this appendix. Tables D.1, D.3, D.5 and D.7 show the
RD and VAR results at different S for objective functions F1, F4, F5 and
F6, respectively. The format of these tables is the same with the format of
Tables C.1 and C.2. Tables D.2, D.4, D.6, and D.8 show the ORD results for
objective functions F1, F4, F5 and F6, respectively. In these tables, the values
separated by a slash in each cell represent the results generated by RS and SG,
respectively.

To further clarify Point 2 in Section 4.4, we give some detailed analyses for
it as follows.

1. When the objective is some kind of expectation of travel time (i.e., approx-
imates the expected travel time F2), the variation represented by RD and
VAR is relatively small. As shown in the tables of RD and VAR results,
F1 with small θ, F4 with small D, F5 with small time interval D − E,
and F6 with a specific α (e.g., α = 0.3) could result in relatively small
RDs and VARs on the whole. The reason is simple. Given a path, the
expectation of its travel times or carbon emissions in S scenarios generally
have small difference for 2m + 1 scenario sets, especially in the scenario
sets generated by SG, where the mean of travel speeds on each link and
each path is controlled to be equal to the mean of the given distribution.

2. When the objective function does not approximate the objective F2, both
methods, but particularly the RS method, will be very sensitive to what
happens to be the extreme values in a scenario set. As shown in the tables
of RD and VAR results, on the whole, large RDs and VARs are produced
for F1 with large θ, F4 with large D, F5 with large time interval D−E,
and F6 with relatively small or large α. Taking F4 with D = 9.00 and
S = 10 as an example, the objective value of a path is equal to the mean
of the tardiness max(Dp + T s − D, 0) in 10 scenarios. In this case, the
tardiness values in most scenarios are 0. The non-zero tardiness values,
especially very large values from some extreme scenarios, have large effects
on the value of F4. Then, even if we use SG to generate scenarios, the
optimal objective values in 2m + 1 scenario sets would vary a lot, which
results in large RDs and VARs as shown in Table D.3. Even so, SG always
generates smaller RDs and VARs than RS does.
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Table D.1. Comparison of RD and VAR as generated by RS and SG for O-D pair (65, 35)
and different θ in F1.

θ
S = 10 S = 15 S = 20 S = 25
RS/SG RS/SG RS/SG RS/SG

RD(%)

0 (3.42, 5.60, 7.65)/0.44 (2.6, 4.01, 6.67)/0.12 (2.35, 3.12, 3.79)/0.23 (1.60, 3.21, 5.84)/0.18
0.2 (3.62, 6.28, 9.25)/0.37 (2.74, 4.56, 6.50)/0.23 (2.54, 3.24, 3.92)/0.28 (1.77, 2.52, 4.06)/0.30
0.4 (3.99, 7.18, 10.55)/0.35 (2.68, 4.62, 6.47)/0.33 (2.94, 3.60, 5.06)/0.33 (2.13, 3.14, 4.58)/0.42
0.6 (5.49, 7.49, 9.96)/0.37 (3.16, 4.62, 5.97)/0.44 (2.55, 3.61, 4.98)/0.38 (1.82, 3.38, 6.20)/0.54
0.8 (6.22, 7.64, 10.64)/0.49 (3.93, 5.36, 12.21)/0.54 (2.60, 4.55, 6.85)/0.45 (2.52, 3.61, 6.60)/0.68
1.0 (4.52, 7.70, 11.64)/0.60 (2.51, 6.00, 11.11)/0.64 (2.44, 4.30, 5.75)/0.52 (2.26, 3.56, 5.49)/0.81
1.2 (6.76, 8.96, 14.13)/0.70 (4.35, 6.35, 9.45)/0.74 (2.56, 4.56, 6.61)/0.59 (2.40, 3.70, 4.79)/0.94
1.4 (4.02, 9.60, 14.57)/0.81 (4.45, 6.39, 9.18)/0.85 (4.69, 6.01, 8.02)/0.66 (2.74, 4.40, 6.09)/1.07
1.6 (6.00, 10.47, 15.21)/1.10 (4.92, 7.38, 10.09)/1.12 (4.23, 5.44, 7.42)/0.86 (3.12, 4.75, 6.61)/1.19
1.8 (5.27, 11.20, 16.89)/1.21 (3.77, 6.66, 13.21)/1.23 (4.30, 7.75, 12.00)/0.95 (3.56, 5.37, 7.10)/1.32
2.0 (5.94, 11.49, 17.39)/1.32 (5.29, 8.80, 14.16)/1.34 (5.54, 7.13, 8.19)/1.03 (4.06, 5.05, 6.57)/1.44

VAR

0 (1729, 3945, 8040)/16 (822, 2263, 6260)/2 (775, 1081, 1430)/6 (299, 1412, 4441)/4
0.2 (1629, 4892, 9596)/14 (758, 2744, 5883)/7 (676, 1310, 2288)/9 (350, 809, 1672)/10
0.4 (2045, 6289, 11614)/16 (994, 3131, 5906)/15 (1131, 1590, 3063)/13 (688, 1279, 2294)/20
0.6 (4058, 7606, 11472)/22 (1334, 2870, 4753)/26 (912, 1781, 2561)/19 (309, 1527, 4478)/36
0.8 (5022, 9199, 18491)/32 (1741, 4276, 18287)/42 (967, 3140, 7607)/27 (745, 2382, 10465)/56
1.0 (2356, 8720, 19638)/46 (953, 6065, 18310)/60 (741, 2258, 3339)/35 (601, 1908, 4068)/81
1.2 (4653, 10649, 29516)/63 (2527, 5918, 12948)/82 (924, 3416, 6010)/46 (684, 1915, 3017)/110
1.4 (2607, 14013, 31953)/85 (2695, 6355, 15095)/108 (2842, 4787, 8139)/57 (1172, 2996, 4385)/144
1.6 (4424, 19466, 39131)/200 (3185, 8294, 19264)/161 (2136, 4227, 7570)/82 (1305, 3462, 6783)/183
1.8 (4140, 21958, 43436)/251 (2318, 8249, 31277)/196 (2785, 9215, 19187)/99 (1566, 4692, 8950)/227
2.0 (5939, 23145, 46295)/309 (4783, 13340, 34110)/235 (5807, 7419, 10353)/118 (2376, 4046, 6920)/275

Table D.2. ORD(%) values as generated by RS and SG for O-D pair (65, 35) and different
θ in F1.

θ
S = 10 S = 15 S = 20 S = 25
RS/SG RS/SG RS/SG RS/SG

0 0.25/0 0.07/0 0.02/0 0.07/0
0.2 0.25/0 0.17/0 0.08/0 0.06/0
0.4 0.39/0 0.23/0 0.09/0 0.04/0
0.6 0.42/0 0.13/0 0.11/0 0.15/0
0.8 0.51/0 0.31/0 0.27/0 0.14/0
1.0 0.72/0 0.42/0 0.25/0 0.13/0
1.2 0.69/0 0.36/0 0.28/0 0.15/0
1.4 0.54/0 0.43/0 0.40/0 0.17/0
1.6 0.88/0.02 0.52/0.02 0.24/0.05 0.26/0.05
1.8 0.79/0.04 0.47/0.06 0.58/0.08 0.23/0.08
2.0 0.78/0.04 0.45/0.04 0.46/0.05 0.32/0.05
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Table D.3. Comparison of RD and VAR as generated by RS and SG for O-D pair (65, 35)
and different D in F4.

D
S = 10 S = 15 S = 20 S = 25
RS/SG RS/SG RS/SG RS/SG

RD(%)

8.86 (28.37, 38.32, 51.23)/4.03 (19.58, 26.75, 36.75)/1.13 (14.96, 22.26, 31.56)/2.05 (15.40, 22.86, 29.92)/1.65
8.88 (22.38, 41.65, 57.92)/4.96 (32.16, 39.06, 45.63)/1.40 (16.96, 31.18, 45.24)/2.52 (17.62, 25.48, 30.48)/2.03
8.90 (48.88, 54.16, 62.50)/4.54 (16.53, 38.84, 60.79)/3.21 (23.85, 34.95, 43.25)/4.44 (16.08, 26.95, 37.95)/3.72
8.92 (58.72, 64.70, 72.90)/7.58 (39.35, 47.69, 56.44)/3.71 (24.84, 37.69, 50.07)/4.56 (27.75, 40.52, 50.22)/5.78
8.94 (58.75, 72.57, 86.25)/9.37 (38.90, 58.85, 74.62)/9.93 (32.67, 48.32, 82.56)/6.03 (32.7, 46.87, 66.27)/7.76
8.96 (66.33, 82.42, 100)/10.05 (50.18, 68.31, 89.49)/14.68 (49.43, 61.14, 77.11)/7.48 (44.38, 54.41, 64.62)/12.67
8.98 (64.16, 92.08, 100)/29.57 (76.93, 83.69, 100)/32.94 (55.95, 77.96, 97.51)/24.26 (50.11, 67.92, 86.36)/23.12
9.00 (94.06, 99.41, 100)/44.18 (77.57, 90.42, 100)/47.88 (68.28, 84.85, 99.61)/47.88 (55.19, 75.86, 95.56)/42.20

VAR

8.86 (1804, 4728, 9161)/16 (808, 1526, 2966)/2 (441, 997, 2237)/6 (337, 959, 1446)/4
8.88 (767, 4505, 10135)/16 (1128, 2376, 3986)/2 (486, 1392, 2411)/6 (332, 802, 1035)/4
8.90 (2764, 4176, 6071)/10 (205, 1742, 4027)/6 (439, 1165, 2023)/10 (217, 595, 983)/6
8.92 (1630, 4762, 7981)/13 (698, 1276, 2120)/5 (374, 817, 1544)/6 (407, 908, 1478)/9
8.94 (1033, 3771, 7302)/11 (247, 1496, 3135)/16 (283, 1278, 6537)/5 (191, 598, 1188)/9
8.96 (784, 2252, 4859)/10 (316, 1263, 3017)/16 (282, 759, 1530)/4 (250, 475, 824)/9
8.98 (290, 3034, 6625)/17 (270, 704, 1284)/30 (153, 558, 1874)/10 (138, 377, 837)/12
9.00 (767, 1799, 4422)/17 (79, 794, 2744)/17 (203, 433, 1305)/16 (63, 251, 1020)/16

Table D.4. ORD(%) values as generated by RS and SG for O-D pair (65, 35) and different
D in F4.

D
S = 10 S = 15 S = 20 S = 25
RS/SG RS/SG RS/SG RS/SG

8.86 3.67/0 1.24/0 0.07/0 0.10/0
8.88 2.77/0 0.91/0 0.17/0 0.33/0
8.90 3.05/0 1.14/0 0.10/0 0.20/0
8.92 5.26/0 1.41/0 0.58/0 0.69/0
8.94 11.78/0 3.52/0 2.02/0 0.74/0
8.96 13.08/0 7.25/0 4.94/0 1.56/0
8.98 24.12/0 8.40/0 7.17/0 5.37/0
9.00 23.60/1.04 14.68/2.08 11.19/4.15 7.52/4.15

Table D.5. Comparison of RD and VAR as generated by RS and SG for O-D pair (65, 35)
and different time windows in F5.

Time S = 10 S = 15 S = 20 S = 25
window RS/SG RS/SG RS/SG RS/SG

RD(%)

(8.90, 8.93) (48.17, 63.28, 82.01)/6.93 (38.22, 49.31, 65.83)/6.93 (31.79, 47.31, 59.09)/5.82 (27.51, 40.09, 49.81)/8.06
(8.87, 8.96) (69.55, 77.71, 95.98)/10.05 (55.18, 71.28, 86.17)/14.68 (52.44, 60.92, 68.19)/7.48 (45.51, 57.32, 75.74)/12.67
(8.84, 8.99) (85.21, 97.69, 100)/31.66 (76.77, 86.73, 100)/38.07 (67.15, 80.45, 96.81)/36.95 (56.55, 74.08, 93.31)/32.26
(8.84, 8.93) (50.23, 65.09, 92.09)/7.13 (26.71, 44.01, 63.85)/5.18 (30.49, 45.69, 52.91)/4.99 (30.97, 39.66, 48.60)/6.48
(8.81, 8.90) (42.61, 53.20, 63.03)/4.54 (24.33, 44.11, 67.52)/3.21 (31.15, 38.53, 43.61)/4.44 (24.58, 29.63, 37.58)/3.72
(8.78, 8.87) (22.64, 40.01, 50.80)/4.45 (24.83, 32.00, 41.12)/1.25 (21.74, 27.33, 30.67)/2.26 (15.52, 24.02, 30.30)/1.82
(8.9, 8.99) (84.19, 94.02, 100)/33.05 (69.94, 83.11, 97.86)/40.25 (70.17, 82.82, 95.02)/39.22 (62.64, 70.51, 83.02)/34.06
(8.93, 9.02) (88.43, 96.38, 100)/57.60 (80.81, 87.27, 95.68)/54.06 (79.64, 84.16, 91.44)/49.03 (57.54, 73.68, 86.1)/44.31
(8.96, 9.05) (96.17, 99.59, 100)/69.02 (84.34, 93.54, 98.87)/41.07 (82.76, 92.66, 99.74)/40.95 (70.27, 82.29, 98.70)/50.47

VAR

(8.90, 8.93) (823, 3035, 9092)/10 (589, 1091, 2089)/15 (333, 1005, 1493)/8 (285, 709, 1124)/11
(8.87, 8.96) (715, 1546, 3218)/10 (435, 1169, 1987)/16 (452, 918, 3604)/4 (220, 464, 1045)/9
(8.84, 8.99) (739, 1545, 3607)/14 (346, 566, 1151)/27 (186, 667, 3046)/20 (136, 275, 477)/15
(8.84, 8.93) (880, 2371, 4783)/9 (218, 1302, 5976)/7 (407, 1037, 2809)/4 (275, 535, 888)/8
(8.81, 8.90) (2678, 4448, 7732)/10 (590, 1806, 3897)/6 (703, 1369, 2879)/10 (371, 770, 1371)/6
(8.78, 8.87) (764, 3554, 6803)/16 (777, 1832, 2694)/2 (611, 1188, 1634)/6 (376, 858, 1334)/4
(8.90, 8.99) (303, 1458, 2814)/20 (209, 696, 1971)/32 (135, 478, 804)/21 (171, 338, 1041)/18
(8.93, 9.02) (652, 1475, 2536)/42 (357, 752, 1424)/33 (195, 631, 1070)/28 (73, 355, 780)/21
(8.96, 9.05) (411, 1402, 4678)/57 (434, 751, 1623)/29 (147, 426, 1053)/25 (177, 296, 845)/48
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Table D.6. ORD(%) values as generated by RS and SG for O-D pair (65, 35) and different
time windows in F5.

Time S = 10 S = 15 S = 20 S = 25
window RS/SG RS/SG RS/SG RS/SG

(8.90, 8.93) 3.95/0 3.31/0 1.57/0 1.87/0
(8.87, 8.96) 6.26/0 6.28/0 3.97/0 1.99/0
(8.84, 8.99) 19.19/1.58 8.85/1.58 9.55/1.58 7.40/1.58
(8.84, 8.93) 4.22/0 2.04/0 1.41/0 1.37/0
(8.81, 8.90) 4.37/0 1.09/0 0.50/0 0.10/0
(8.78, 8.87) 1.59/0 1.26/0 0.52/0 0.15/0
(8.90, 8.99) 18.33/2.94 9.96/1.96 7.58/1.96 8.22/3.92
(8.93, 9.02) 31.92/8.62 22.29/2.87 26.33/2.87 16.5/4.91
(8.96, 9.05) 19.03/4.01 20.48/14.24 16.29/13.17 13.07/11.69

Table D.7. Comparison of RD and VAR as generated by RS and SG for O-D pair (65, 35)
and different α in F6.

α
S = 10 S = 15 S = 20 S = 25
RS/SG RS/SG RS/SG RS/SG

RD(%)

0.1 (3.77, 7.93, 11.14)/4.17 (4.84, 6.41, 8.74)/3.26 (2.72, 4.98, 7.14)/3.01 (3.28, 4.26, 5.31)/1.58
0.2 (5.67, 7.29, 10.89)/5.67 (4.81, 5.81, 6.78)/3.25 (4.03, 4.93, 6.84)/3.29 (3.66, 4.48, 5.94)/3.80
0.3 (4.79, 6.87, 8.65)/3.45 (4.27, 5.82, 7.50)/3.80 (3.45, 4.64, 6.54)/3.80 (2.65, 3.90, 5.29)/2.14
0.4 (5.52, 7.14, 10.35)/5.43 (3.70, 5.55, 8.00)/4.29 (3.31, 4.41, 5.33)/3.80 (3.33, 4.21, 5.68)/2.09
0.5 (5.15, 8.28, 10.41)/5.30 (1.89, 5.55, 10.07)/4.62 (3.31, 5.39, 7.55)/1.10 (2.11, 3.56, 5.29)/2.44
0.6 (5.54, 8.74, 11.86)/2.48 (3.61, 5.64, 7.96)/2.47 (2.91, 3.65, 5.12)/2.09 (2.46, 3.68, 5.47)/2.22
0.7 (5.09, 8.85, 14.22)/3.61 (5.32, 6.49, 8.56)/3.14 (2.28, 4.58, 7.30)/2.48 (2.07, 4.23, 6.36)/2.02
0.8 (7.66, 10.51, 14.45)/3.44 (5.28, 7.06, 9.05)/2.40 (3.91, 5.95, 7.73)/2.22 (3.27, 5.01, 7.44)/2.62
0.9 (7.09, 13.25, 18.62)/4.67 (6.33, 8.88, 14.13)/4.88 (6.02, 7.31, 11.62)/3.87 (4.66, 6.35, 8.43)/4.33
1.0 (9.52, 14.51, 18.62)/3.13 (3.71, 9.96, 17.08)/2.65 (8.67, 10.99, 12.86)/4.70 (7.13, 11.07, 15.16)/4.59

VAR

0.1 (2528, 6938, 14311)/1500 (2428, 4616, 8732)/1030 (766, 2801, 5351)/946 (1146, 2164, 3939)/293
0.2 (3785, 6767, 11297)/4967 (2912, 3902, 6002)/989 (1750, 3169, 8657)/1017 (1211, 2380, 3966)/1188
0.3 (2636, 5744, 12385)/1511 (1719, 3871, 6902)/1889 (1359, 2879, 3748)/1968 (1115, 1955, 3241)/377
0.4 (3757, 5915, 9535)/3200 (1044, 3571, 6408)/1803 (1154, 2659, 4464)/1142 (1066, 1999, 4406)/344
0.5 (2381, 7998, 12812)/3475 (315, 3962, 9092)/2071 (1324, 3522, 7207)/128 (582, 1780, 4640)/802
0.6 (5763, 9744, 16466)/797 (1435, 4511, 7469)/766 (855, 1653, 3984)/573 (736, 1663, 3199)/541
0.7 (3171, 10853, 27934)/1548 (3073, 5213, 8311)/1049 (668, 3173, 6593)/646 (469, 2473, 4362)/613
0.8 (10611, 18373, 38065)/1838 (4382, 7845, 12156)/818 (2303, 5802, 9212)/713 (1925, 4068, 8083)/917
0.9 (6558, 31329, 55924)/3430 (5172, 15713, 41423)/4022 (3622, 8377, 20615)/1562 (2438, 6545, 16439)/2135
1.0 (20687, 43022, 61234)/1579 (3652, 17016, 39717)/900 (16007, 26113, 38528)/2910 (11292, 25954, 44208)/2179

Table D.8. ORD(%) values as generated by RS and SG for O-D pair (65, 35) and different
α in F6.

α
S = 10 S = 15 S = 20 S = 25
RS/SG RS/SG RS/SG RS/SG

0.1 0.55/0.80 0.41/0.80 0.39/0.53 0.39/0.28
0.2 0.50/0.64 0.53/0.31 0.45/0.17 0.37/0.17
0.3 0.32/0.02 0.24/0.21 0.19/0.21 0.20/0.02
0.4 0.59/0.79 0.36/0.46 0.25/0.17 0.45/0.05
0.5 0.50/0.44 0.27/0.29 0.36/0 0.17/0.15
0.6 0.68/0.18 0.35/0.28 0.21/0.18 0.16/0
0.7 0.70/0.66 0.27/0.21 0.24/0.11 0.24/0.05
0.8 0.79/0.31 0.53/0.06 0.31/0.04 0.30/0.02
0.9 0.86/0.53 0.53/0.38 0.44/0.23 0.37/0.25
1.0 3.91/2.45 2.43/0.73 2.12/1.22 2.25/1.90
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Appendix E. Results in an urban road network

To test the RS and SG methods for urban road networks, we further con-
duct experiments in a road network of Chengdu city in western China. The
underlying road network, as shown in Fig. E.1, includes 408 nodes and 1,250
road links within the first ring of Chengdu. We consider 30 2-min time periods
between 3pm and 4pm, which leads to 37,500 (1250 links ×30 periods) random
speed variables. It is more than three times the 10,512 random speed variables
in the California freeway network, which is approximately the largest problem
size that can be handled by our laptop with 16GB RAM used for this research.
We use the 110-day real speed dataset described in Guo et al. (2020). We test
the two methods for 10 O-D pairs and S = 10, 20, 30, 40 under the same six
objective functions described in Section 4.3.

Tables E.1 and E.2 present the RD, VAR and ORD results for 10 different
O-D pairs under objective function F1. To be consistent with the tables above,
we present the minimum, the mean, the maximum of RDs and VARs, and
the mean of ORDs in ten runs for RS in the tables. The results support the
finding from the freeway network that, for all O-D pairs, SG generates much
smaller RDs and VARs than RS does, and SG achieves much smaller ORDs
with only 10 scenarios. However, compared with the RDs and VARs of the
freeway network in Table B.1 and the ORDs in Table 2, we find that the urban
road network has much larger RDs, VARs and ORDs. Moreover, for SG, 40
scenarios (S = 40) cannot get a stability level of RD ≤ 5% for all O-D pairs.
That is, compared with freeway networks, we need more scenarios to achieve the
same stability level in urban road networks. This result may be explained by
the fact that urban road networks have a more complicated network topology,
shorter road links, and higher speed variance. They are thus characterized by
higher correlations of travel speeds in both space and time. This affects the
number of scenarios required for the SSPs in urban road networks, but not the
superiority of SG over RS.

Tables E.3 and E.4 present comparison results for O-D pair (22,128) under
six different objective functions. We set the departure time Dp to 3pm, θ to
1.27 in F1, due time D to 15.10 (i.e., 15:6:00 in HH:MM:SS format) in F4, time
window (E,D) to (15.09,15.10) in F5, and on-time arrival probability α to 60%
in F6. It is obvious that, for the same O-D pair, different objective functions
have large effects on the RDs, VARs and ORDs, but SG still outperforms RS in
terms of the three metrics. Objective functions F2 and F3 lead to much smaller
RDs and VARs than objective functions F4 and F5 that consider earliness and
/ or tardiness do. These findings are consistent with those in the California
freeway network.
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Fig. E.1. The Chengdu network within the first ring. The numbers refer to nodes that we
use in the main text.

Table E.1. Comparison of RD and VAR as generated by RS and SG for different O-D pairs
in the Chengdu road network.

No. O-D pair
S = 10 S = 20 S = 30 S = 40
RS/SG RS/SG RS/SG RS/SG

RD(%)

1 (22,128) (17.12,19.68,23.82)/8.60 (12.26,14.34,18.76)/8.06 (6.70,9.81,14.16)/4.91 (4.17,7.39,9.28)/3.47
2 (287,260) (11.96,16.04,20.40)/9.23 (5.30,8.90,12.09)/4.97 (4.05,7.52,10.90)/3.41 (2.54,4.71,7.08)/3.98
3 (55,64) (13.53,20.21,26.53)/10.28 (5.21,15.05,21.39)/5.87 (5.56,9.06,18.15)/3.30 (4.88,7.64,9.93)/2.52
4 (6,300) (15.23,22.04,27.50)/10.06 (7.33,14.67,17.24)/8.05 (5.14,10.83,13.85)/7.90 (6.85,9.74,14.13)/6.47
5 (176,200) (21.81,28.50,34.14)/11.23 (12.82,17.44,22.45)/7.69 (6.43,11.84,15.25)/4.06 (6.80,10.18,14.46)/4.05
6 (109,42) (6.91,13.68,18.28)/7.87 (6.24,11.06,15.98)/3.85 (6.81,7.83,9.54)/4.70 (3.33,5.65,8.16)/4.97
7 (229,135) (21.84,27.43,34.36)/15.20 (13.49,18.28,23.29)/10.28 (9.22,13.56,18.79)/7.60 (8.84,11.76,16.26)/7.28
8 (94,328) (13.11,23.35,31.82)/5.46 (13.19,18.10,25.13)/5.66 (11.98,14.86,18.73)/5.92 (8.89,11.34,17.30)/4.76
9 (283,328) (12.56,20.16,27.59)/9.82 (8.13,13.77,18.54)/6.58 (7.90,12.35,16.22)/5.36 (7.51,9.32,11.17)/4.64
10 (277,381) (11.89,22.07,30.43)/7.62 (9.39,14.12,19.46)/4.37 (8.71,13.53,17.94)/4.32 (7.09,10.25,14.00)/3.36

VAR

1 (22,128) (807,1238,1894)/167 (330,582,985)/147 (138,259,461)/57 (62,154,211)/43
2 (287,260) (1303,2910,4573)/765 (439,826,1358)/167 (166,568,1028)/125 (79,262,660)/140
3 (55,64) (564,2041,3570)/300 (79,1067,2129)/159 (92,335,1380)/46 (73,197,370)/21
4 (6,300) (225,725,1535)/91 (66,295,485)/51 (37,164,340)/54 (64,117,174)/55
5 (176,200) (718,1246,1826)/119 (190,419,740)/92 (55,195,296)/18 (55,126,202)/18
6 (109,42) (482,1902,3292)/355 (344,1145,2628)/117 (329,578,849)/146 (110,329,731)/192
7 (229,135) (2174,3449,5675)/650 (692,1249,1860)/282 (359,715,1565)/116 (277,475,747)/137
8 (94,328) (144,603,926)/28 (194,344,740)/18 (117,212,332)/23 (73,111,213)/11
9 (283,328) (294,755,1460)/113 (104,285,443)/43 (80,205,352)/39 (87,113,165)/21
10 (277,381) (118,549,1100)/36 (65,195,345)/18 (82,173,328)/16 (43,92,193)/8
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Table E.2. ORD(%) values at different S generated by RS and SG for different O-D pairs
in the Chengdu road network.

No. O-D pair
S = 10 S = 20 S = 30 S = 40
RS/SG RS/SG RS/SG RS/SG

1 (22,128) 2.63/0.95 1.99/0.84 1.19/0.95 0.57/0
2 (287,260) 2.55/0.96 1.18/0.70 0.87/0.50 0.32/0.50
3 (55,64) 1.87/0 0.94/0 0.14/0 0/0
4 (6,300) 2.72/1.44 1.15/1.44 0.29/0 0/0
5 (176,200) 5.02/0.41 2.78/0.41 1.38/0 0.69/0
6 (109,42) 0.72/0.30 0.09/0 0/0 0/0
7 (229,135) 4.81/1.86 2.51/0.56 1.52/0 0.89/0
8 (94,328) 1.16/0 0.42/0 0.11/0 0.11/0
9 (283,328) 1.16/0 0.45/0 0/0 0/0
10 (277,381) 0/0 0/0 0/0 0/0

Table E.3. Comparison of RD and VAR as generated by RS and SG for O-D pair (22,128)
and different objective functions in the Chengdu road network.

Objective S = 10 S = 20 S = 30 S = 40
function RS/SG RS/SG RS/SG RS/SG

RD(%)

F1 (17.12,19.68,23.82)/8.60 (12.26,14.34,18.76)/8.06 (6.70,9.81,14.16)/4.91 (4.17,7.39,9.28)/3.47
F2 (9.28,14.24,17.13)/2.84 (7.25,9.63,12.37)/2.98 (4.99,6.72,9.84)/1.27 (4.10,5.73,7.79)/1.33
F3 (7.36,9.80,14.28)/2.15 (5.21,6.46,8.73)/1.19 (2.93,4.73,5.96)/0.83 (1.52,2.85,5.74)/0
F4 (39.48,54.52,69.42)/16.60 (29.66,39.13,48.46)/18.16 (16.30,26.01,37.09)/6.95 (15.71,22.77,30.32)/9.22
F5 (45.52,60.32,69.10)/17.87 (33.88,41.32,49.36)/19.16 (24.12,33.43,40.04)/7.03 (17.62,24.47,32.91)/10.86
F6 (12.41,19.09,26.22)/8.31 (9.09,12.21,17.31)/7.52 (5.91,9.39,12.55)/5.93 (2.86,6.11,7.24)/5.15

VAR

F1 (807,1238,1894)/167 (330,582,985)/147 (138,259,461)/57 (62,154,211)/43
F2 (184,428,764)/17 (95,193,296)/14 (56,85,184)/3 (37,63,94)/3
F3 (0,0,0)/0 (0,0,0)/0 (0,0,0)/0 (0,0,0)/0
F4 (263,437,776)/18 (94,165,247)/16 (20,69,151)/2 (18,50,84)/4
F5 (295,409,608)/18 (90,184,294)/16 (67,96,132)/2 (21,44,86)/5
F6 (389,917,1902)/169 (156,327,683)/120 (65,196,429)/72 (20,80,130)/56

Table E.4. ORD(%) values at different S generated by RS and SG for O-D pair (22,128)
and different objective functions in the Chengdu road network.

Objective S = 10 S = 20 S = 30 S = 40
function RS/SG RS/SG RS/SG RS/SG

F1 2.63/0.95 1.99/0.84 1.19/0.95 0.57/0
F2 2.03/0.29 1.14/0 0.52/0 0.39/0
F3 0.63/0 0.27/0 0.12/0 0.02/0
F4 8.53/0 6.50/0 2.04/0 1.24/0
F5 7.43/0 5.53/0 2.69/0 0.95/0
F6 2.59/0.67 1.43/0.81 0.97/1.11 0.53/0.78
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