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Hajnalka Vaagen1, Stein W. Wallace2, Michal Kaut3  

 
 
 
Abstract 
In agile supply chains, dependencies in demand for products (in particular correlations), 
as well as substitution among products, vary substantially, and, due to uncertainty in 
market acceptance, a substantial share of the portfolio item demands follow bi-modal 
distributions. Typically, advanced heuristics and major simplifying assumptions on 
these dependencies are needed to reduce the complexity to an appropriate level for 
analytical solutions of models. By applying a single-period stochastic model to the 
multi-item substitutable newsvendor problem, we demonstrate that simplifying 
assumptions on distributions and dependencies can lead to rather poor solutions, and as 
a consequence, numerical models – despite their obvious inability to produce general 
data-independent results – have an important role to play in assortment planning. By 
using a brand name sportswear assortment problem, we show that even when 
technology and supply chain flexibility allows for continuous information and 
production updates, the underlying distributional and dependency assumptions used in 
the planning models are crucial. We notice, though, that the value of substitution is high 
and compensates, to some extent for lack of information. We have found that expected 
profit can drop with as much as 30% when simplifications are applied.  
 
 
Keywords: Substitution, Correlation, Assortment, QR, Newsvendor, Stochastic 
Programming, Bimodal distributions, Textile apparel, Attribute based planning. 

                                                 
1 Hajnalka Vaagen, Molde University College, P.O.Box 2110, NO-6402 Molde, Norway, Phone: 
+4771214000, Fax: +4771214100,  e-mail: hajnalka.vaagen@himolde.no 
 
2 Stein W. Wallace, Department of Management Science, Lancaster University Management School, 
Lancaster University, Lancaster LA1 4YX, England, stein.w.wallace@lancaster.ac.uk 
 
3 Michal Kaut, Department of Industrial Economics and Technology Management,  Norwegian 
University of Science and Technology, Trondheim, Norway e-mail: michal.kaut@iot.ntnu.no 



 2 

1. Introduction and relevant literature 
 
Capturing market trends and satisfying customer demand by supplying quality products 
in very short time is the dominant challenge in modern manufacturing. Rojas and Frein 
(2009) show that information sharing across the supply chain members is always better 
than not sharing, even under the condition when a chain member can judge this 
information as not reliable for assortment and production planning. Furthermore, 
sophisticated information technology enables fast and accurate information flow. 
However, when information available at the time of planning is largely qualitative and 
based on trend estimates, and lead times are pressed to a minimum, it is crucial to know 
what kind of information to look for, how to interpret it, and how to apply it  in portfolio 
and production planning. Modelling is about understanding which aspects of a real 
problem to include in a mathematical formulation and which to leave out. Most of the 
time, the only way to be sure that a certain aspect of a problem can be left out or 
simplified – still resulting in a useful model – is to investigate explicitly what happens 
when that aspect is included or left out. A minimal requirement for doing so is to have a 
tool allowing the aspect to be included in the model. This paper is set in such a 
framework. We wish to understand whether or not it is acceptable to simplify 
dependencies in demands and substitution, and still end up with a useful model. To 
investigate this we need a tool capable of handling the dependencies, and in our case that 
is a stochastic program with a careful process for scenario generation to capture the 
dependencies. 
 
Worried over the variety explosion in contemporary markets and its negative impact on 
own supply chain activities, many suppliers and retailers turn from offering higher 
variety to a more efficient assortment strategy. Existing retail and supplier practices can 
handle corporate complexity. However, this is mostly done ’by art and judgment’ and by 
rather substantial difficulties and inconsistencies when facing large problems. On the 
theoretical side, there is a substantial amount of work on how to achieve agility by 
enabling responsiveness and robustness to effectively handle the volatile market place 
with constantly changing product preferences (see for example Ifandouas and Chapman, 
2009). From an operations research perspective, Kök et al. (2008) give an extensive 
review on published work treating the assortment planning problem.  Much of this work 
focuses on analytical formulations that require different heuristics and strong assumptions 
on the demand patterns and inter-item dependencies to achieve solutions. It is our 
understanding, both from the literature (see among others, Rajaram 2001, Tang and Yin 
2007, Kök et al. 2008) as well as own observations, that within assortment planning, 
dependencies in demand for products (in particular correlations) as well as substitution 
among products, vary substantially. Rajaram says in 2001 that it is important to model 
demand as a random variable and to estimate parameters so to reflect the “significantly 
more complex” interaction effects in the assortment. For a practical illustration, consider 
the integration of textile technology and information-communication technology (ICT) to 
develop new materials with membranes and catalytic reactors for integrated 
communication systems. Or nanotechnologies used to develop organic-inorganic hybrids 
to facilitate ‘green’ properties. Although the final demand is on end-product level, when 
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new products are launched on the consumer market questions like ‘How do ‘green’ 
properties, shape memory, integrated ICT, and ephemeral seasonal trend attributes affect 
each other and the market demand for these and other related products?’ naturally arise. 
It is rather obvious that, due to the different product attributes, complex dependency 
structures arise in the assortment. Hence, for example assuming that all correlations 
and/or substitution parameters are homogeneous across the products does not describe the 
problem well. Also, as we shall argue in Section 2, assuming unimodal distributions is an 
extremely strong assumption in agile supply chains. Despite Kök et al.’s (2008) 
recognition of the potentially enormous academic contribution in adding rigor and 
science to the retailers’ developed practices – much like it has been done in for example 
finance –, discussions on the numerical complexity, tractability, and applicability of these 
formulations, as well as empirical tests of the theoretical predictions, are rather vague. To 
the best of our knowledge, the only papers providing numerical results on assortment 
planning with real data are Kök and Fisher (2007), Vaagen and Wallace (2008) and 
Vaagen et al. (2009). The Kök and Fisher model is applied at a supermarket chain. The 
Vaagen and Wallace and Vaagen et al. models treat assortment risk and product 
substitution for a sports apparel supplier.  
 
A major goal of this paper is to demonstrate that simplifying assumptions applied by 
some of the analytical formulations can lead to rather poor solutions, and as a 
consequence, that numerical models – despite their obvious inability to produce general 
data-independent results – have an important role to play in assortment planning. The 
world is simply too complex to be properly analyzed using only analytical models. To 
demonstrate the value of numerical models in assortment planning, we use a stochastic 
programming (SP) formulation of the problem given by the frequently cited works of 
Rajaram and Tang (2001) and Netessine and Rudi (2003): newsvendor-inventory 
planning with substitution among products with jointly distributed demands. Rajaram and 
Tang provide one of the very few existing numerical tests to the multi-item problem. As 
such, these numerical examples are useful for a side-by-side comparison of the behaviour 
of numerical and analytical approaches. We use recently developed concepts and SP 
models from Vaagen and Wallace (2008) and Vaagen et al. (2009). Both papers allow 
correlations and substitution to vary across products and can handle demands that are not 
uni-modally distributed. Vaagen and Wallace (2008) develop a numerically tractable 
stochastic program for the multi-item newsvendor assortment-risk problem. Their model 
captures the important profit-risk trade-off encountered in real-life production and retail 
settings. It is small, convex and well-structured with negligible computation times, 
indicating its potential usefulness in industrial applications. Vaagen et al. (2009) use the 
demand modeling process developed by Vaagen and Wallace (2008) to further 
understand the complex dependency patterns in the assortment. Particularly, they show 
how substitution and correlations among the individual item demands are connected, and 
discuss modeling challenges of the complex consumer-directed substitution problem.  
 
The contribution of this paper is the evidence provided on the value of having a 
numerically tractable stochastic programming formulation of the assortment planning 
problems with complex dependencies. By applying an SP formulation without solution 
heuristics and simplifying assumptions common in the operations research literature, we 
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provide insights on how commonly adopted assumptions on dependencies and 
distributions lead to reduced complexity but also potentially rather bad solutions. 
Particularly, we show that (i) actual profit can drop with as much as 30% when 
simplifications on substitution patterns are applied, (ii) underlying distributional 
assumptions are important even when technology and supply chain flexibility allows for 
continuous information and production updates, we show (iii) the value of SP in 
operational variety planning by means of product line trimming, and (iv) the value of SP 
in attribute based assortment planning. We believe, the findings are appealing from a 
theoretical perspective, as well as for practitioners and software providers in QR 
assortment planning.  
 
The rest of the paper is organized as follows. In the remaining of this section we discuss 
relevant work on substitutable newsvendor problems. In Section 2 we present the multi-
step demand-modeling process, and the stochastic program designed to handle the 
numerical complexity of demand distributions and dependencies. Test cases and detailed 
discussions on the numerical aspects can be found in Section 3. We conclude in Section 
4.  
 
Related literature 
For extensive reviews on the assortment planning literature we refer to Kök et al. (2008) 
and Mahajan and van Ryzin (1998). Given that we analyse the substitutable newsvendor 
problem, we provide a brief description on some central findings about that problem, 
emphasizing underlying assumptions, solution heuristics and parameter simplifications. 
Substitution refers to customers’ willingness to substitute within a particular product 
category when facing stockout of their first preference.  
 
For single-period two- and multi-item newsvendor formulations, see among others Parlar 
and Goyal (1984), Pasternack and Drezner (1991), Gerchak et al. (1996), Bitran and Dasu 
(1992), Khouja et al. (1996), Bassok et al. (1999), Rajaram and Tang (2001), and 
Netessine and Rudi (2003). These use exogenous demand models, where customers 
choose from a set of products, and in case of stockout they might accept an alternative 
variant according to given substitution probabilities. If the substitute is also out of stock, 
the sale is lost. The utility based substitution models assume that the consumer assigns a 
particular utility to each product, and the variant available with highest utility is chosen; 
allowing for several substitution attempts.  See among others Mahajan and van Ryzin 
(2001), Gaur and Honhon (2006), and Chong et al. (2004).  
 
These analytical formulations have the great advantage of being general in their findings 
and provide great insights and understanding. However, most authors admit that an 
explicit solution to the problem is difficult to achieve without different heuristics and 
simplifications on demand patterns and dependencies; such as normality assumptions or 
the use of average correlation and substitution values. Bassok et al. (1999), in their full 
downward substitution model, assume independently distributed individual demands 
realized at the beginning of the planning horizon. Rajaram and Tang (2001) develop 
conditions under which substitutability between two products enables for reduced 
variability of the effective demand e

iD , consisting of the original demand iD for product i 
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and the substitution demand from other items. A service rate heuristic is further evaluated 
by a second heuristic to approximate an upper bound on profit. The results obtained by 
Rajaram and Tang (2001) are analytically confirmed by Netessine and Rudi (2003). The 
underlying assumption here, as well as in Rajaram and Tang, is that substitution is 
generated and directed by the consumer. Netessine and Rudi enforce direct sales as first 
decision. However, the dynamics of the true consumer-directed substitution is not 
considered, and the assumption of only one substitution attempt is strong.  
 
The Rajaram and Tang formulation clearly implies optimal allocation between direct and 
substitution sales. This means that although it is the customers’ willingness to actually 
accept a different than first-preference product that underlies the substitution, the 
substitution process is ‘controlled’ by the retailer or manufacturer. This is a characteristic 
of the manufacturer-directed substitution problem. For the properties of manufacturer- 
and consumer-directed substitution processes we refer to Mahajan and Van Ryzin (2001). 
This potential gap between what the authors claim to formulate and what they actually 
do, indicates the substitution problem complexity.   
 
Utility based substitutable assortment planning approaches are better suited to capture the 
true customer choice behaviour. Mahajan and van Ryzin (2001) achieve nearly optimal 
solutions by applying a sample path analysis and, as such, allowing for a general 
stochastic process of arrivals. Despite this, these models’ limitations make them less 
useful in agile environments with complex dependencies. The IIA property of MNL 
models (Independence of Irrelevant Alternatives) requires that the ratio of choice 
probabilities is independent of the choice set. Further, solutions derived by these 
formulations clearly define the assortment structure to a particular combination of 
popular/unpopular products. In other words, the products are defined ex-ante planning to 
be either popular or unpopular (see also van Ryzin and Mahajan, 1999). Gaur and 
Honhon (2006) recognize that an assumption of exact knowledge of customer choice 
makes the substitution problem less complex. More precisely, the authors say “Another 
limitation of the locational choice model is with respect to the nature of randomness in customer 
choice … given the most preferred good of a consumer, the sequence of product selections that 
the consumer makes is known precisely. It would be natural to generalize the model to allow 
randomness both in the locations of the most preferred goods of consumers and in customers’ 
sequence of product selection”. However, we could not find any concrete suggestion on 
how to relax this strong and potentially unrealistic assumption of ex-ante knowledge of 
popularity; except in Vaagen and Wallace (2008).  
The consumer choice model of Chong et al. (2004) captures the effect of product 
substitution in terms of expected demand and demand variability, when making product 
trimming decisions. Although trimming affects the individual demands as well as the 
aggregated portfolio demand, dependencies among the individual items are not directly 
considered.  
 
Probability distributions in consumer choice models (such as Poisson customer arrivals), 
as well as in the exogenous demand models, are frequently simplified by normal 
approximations. Mahajan and van Ryzin (2001) point to this being a common practice 
when applying inventory models in practice. To achieve a solution, the numerical 
example of Rajaram and Tang replaces dependency descriptors (such as correlations) 
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with average values across the group. Accordingly, we do not know whether the findings 
are also valid for heterogeneous dependency and demand patterns. Vaagen and Wallace 
indicate in 2008 that by mis-specifying distributions and correlations, fashion and sports 
apparel suppliers might introduce internal uncertainty into their planning processes, and 
hence increase the risk of their future payoffs. 
 
It is also unclear how the parameters required for these models can be appropriately 
estimated. Despite the large amount of work on assortment optimisation, less attention is 
given to substitution behaviour estimation (see also Kök et al, 2008, for references). Kök 
and Fisher (2007) present a substitution estimation approach that works when sales 
summary data is available. Before that, Anupindi et al. (1998) develop an estimation 
model that requires inventory-transaction data. In QR supply chains, assortment decisions 
are mainly taken in light of uncertainty, when the information available is limited to 
subjective understanding and aggregated estimates. As such, these estimation methods 
are less appropriate in QR settings. Vaagen et al. (2009) develop a decision independent 
approach with substitution shares describing the similarity between the items with regard 
to the demand driver attributes; a method which we believe is better suited for 
dynamically changing trend driven industries.  
 

2. Model formulation and parameter estimation 

Model formulation 
Based on observing increasingly complex model formulations and the recognition that 
multidimensional newsboy models with complex dependencies are analytically difficult 
to deal with, we analyse whether the numerically approachable SP formulation provides 
better solutions. We intend to avoid solution heuristics and simplifying assumptions on 
distributions and substitution patterns, as these in our understanding drive the assortment 
structure. As such, it is obvious that we are dependent on data; data that cannot be 
obtained without internal understanding of the specific environments. However, we do 
not consider this to be a disadvantage, but rather recognition and acceptance of reality.  
 
We solve the problem given by Rajaram and Tang, 2001 (henceforth, RT). As discussed 
in the literature part, the outcome of the RT model is an optimal allocation between direct 
and substitution sales; hence we choose to analyse the same problem. The optimal 
solution implies that the focal part (manufacturer or retailer) controls these values; in 
other words, it tells the customers how much of the first and lower preferences they may 
buy. Although this is a simplified case of the true substitution process observed in retail 
settings, agile suppliers can indeed, to some extent, control the choice process. An 
example is the textile apparel franchisee. Recall that our focus is on demonstrating the 
impact of simplifications on, in our understanding, central terms. As such, we do not 
discuss the modeling aspects and potential solutions of the complex consumer-directed 
substitution problem; for this, we refer to Vaagen et al. (2009).  
 
In the numerically tractable two-stage stochastic program given by Vaagen et al., (2009), 
the first stage consists of the production decisions before observing demand. The second 
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stage (after demand has been realized) optimally allocates direct and substitution sales. 
See Kall & Wallace (1994) for further information about two-stage stochastic programs. 
More precisely, the following process is modeled: In a first step, most appropriately in 
the design phase, the manufacturer/retailer defines the similarity/dissimilarity between 
the products with regard to the demand driver attributes (may be subjective), and uses 
this information to establish the substitution measures and correlation matrices. As such, 
the substitution measure is independent of inventory levels and sales transaction data. 
Secondly, given substitutability and the established individual item demand distributions, 
the manufacturer decides the optimal assortment to offer: products to include in the 
portfolio and their inventory levels. Finally, when the actual customer demand becomes 
known, the manufacturer assigns first and substitute preferences so as to maximize 
expected assortment profit, given the initial inventory levels and substitutability matrix. 
The outcome of this process is the factual substitution.  
 
 
The model 
Sets:   

S – set of demand scenarios;  

I – set of items in the reference group portfolio 

If we do not state otherwise, we use indices with the following meaning SsIji ∈∈ ,,  

Variables 

xi = production of item i 

ys
i = sale for item i scenario s 

zs
ij= substitution sale of item i, satisfying excess demand of item j in scenario s 

zts
i = substitution sale of item i, satisfying excess demand from all j’s in scenario s 

ws
i = salvage quantity for item i in scenario s 

Parameters 

ds
i = demand for item i in scenario s  

ps = probability of scenario s 

vi = selling price for item i 

ci = purchasing cost for item i  

gi = salvage value for item i  

[ ]1,0∈ijα  = substitutability probability; the probability that the consumer is willing to 

accept item j when actually wanting item i  
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Expected assortment profit from ordinary sales, substitution sales and salvage, over all 
items and all scenarios, is maximized using Equation (1). Equations (2) state that that 
total sales for item i – coming from primary demand for i plus all j sales generated by 
unmet demand for i –  are constrained by the total demand for item i. This constraint can 
be re-organized as   

   SsIiydz s
i

s
i

ijIj

s
ji ∈∀∈∀−≤∑

≠∈

,
,

  

stating that substitution sales from item i cannot exceed available unsatisfied demand for 
i. Equation (3), for a given i, is the upper bound on substitution sale of item i for item j; 
that is, excess demand for item j with given substitutability probability ijα . For a given i, 
(4) gives the overall substitution sale i from all j’s. Equation (5) defines the salvage 
quantity; the quantity of item i left after satisfying primary demand and substitution 
demand from all j. Constraints (6), (7), (8) and (9) are non-negativity constraints for the 
respective variables. Expressions (5) and (10) together imply that the substitution sale of 
item i is limited to the remaining supply of the item; that is,  

., SsIiyxzt s
ii

s
i ∈∈∀−≤

    

Parameter estimation 
Parameter estimation, and particularly the multi-step demand modelling process, is an 
essential part of this approach and the SP framework is chosen for its ability to handle the 
established demand distributions. Furthermore, simultaneous discussion on parameter 
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estimation and assortment optimisation enforces focus on achieving sufficient 
consistency with regard to information used throughout the estimation and optimisation 
process.  
 
Below, we treat parameters defining the effective demand for a product i, consisting of 
the original demand (described by mean demand, its variance, and the correlations 
between demand for item i and all other items j) and the substitution demand from j items 
(driven by substitutability measures; reflecting the similarity between the items with 
regard to the demand driver attributes). Parameter estimation is based on the works of 
Vaagen and Wallace (2008) and Vaagen et al. (2009). The scenario-based two-step 
process, proposed by Vaagen and Wallace (2008), models product demand with complex 
correlation structures. The demand modelling concepts developed by the authors are then 
used by Vaagen et al. (2009) to establish substitution measures in a multi-item 
newsvendor assortment problem.  
 
In the context of a sports apparel producer, Vaagen and Wallace (2008) handled the 
‘chaotic’ demand patterns (according to Christopher et al., 2004) – frequently simplified 
by both theory and practice – as numerically tractable bi-modal distributions, easily 
updatable with increased information about which items are more or less accepted by the 
market. The authors’ demand model is based on two major observations. Firstly, several 
previous studies indicate that nearly half of the assortment becomes obsolete, and that 
only few items stand for a large share of the assortment profit (see among others Raman 
et al., 2001; Vaagen and Halskau, 2005; Vaagen and Wallace, 2008).  In other words, 
there is ‘competition’ among the products in the portfolio.  Secondly, in agile supply 
chains (such as fashion apparel), at the time of assortment decisions, there is limited 
information about which products become accepted by the market. Hence for many of 
them the world takes two possible states: State 1 when accepted, and State 2 when there 
is limited market acceptance (Vaagen and Wallace, 2008). 
 
Further, Vaagen and Wallace (2008) point out that the much less uncertain aggregated 
assortment demand refers to demand across all the ‘accepted’ items. In other words, 
aggregated estimates do not consider the potential states of the world but show the 
potential demand given that the supplier/retailer offers the right products. Hence, simple 
distributions are appropriate to describe the state conditioned individual item demand 
distributions. However, decision makers are frequently exposed to the uncertainty of 
market acceptance and, hence, the existence of two states of the world, and possibly bi-
modal distributions. 
 
The two-step direct-demand modelling process is summarized as follows (for 
visualization, a two-item illustration is given in figure 1): 
(1) For the two possible states of the world, the authors do not approximate the complex 
bi-modal overall distributions, but define the state-conditioned distributions by using 
aggregated demand data across whatever will become accepted/not accepted by the 
market. For the items P1 and P1 in the figure, the conditional marginal distributions are 
d1/S1, d1/S2 and d2/S1, d2/S2 respectively. Further, the authors generate scenarios for each 
state of the world independently, using some appropriate scenario-generation tool. A 
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special version of the moment-matching algorithm from Høyland et al. (2003), the 
method of Kaut and Lium (2007), is used here. This method allows generating scenarios 
from distributions specified by their marginal distributions and a correlation matrix. The 
correlations are established by using understanding on the demand drivers between the 
products ( [ ]1,12,1 +−∈c  in the figure). 
(2) The overall distribution is then built by connecting all the scenarios by state 
probabilities that sum up to one (prob(S1) and prob(S2) in the figure). Under limited 
information, the two states occur with equal probabilities.  This way, the uncertainty in 
the individual items’ market acceptance is captured.  
Substitutability between the products is established in a similar manner as correlations, 
based on understanding how the product attributes drive the similarity between products 
with regard to customer preferences; accordingly, we also indicate this measure 

[ ]1,02,1 ∈α  in the figure. 
 

 
Figure 1 The demand modelling process, illustrated for two items 

 
A major distinction of the works of Vaagen and Wallace (2008) and Vaagen et al. (2009) 
from other works in the literature is the authors’ way to approach inter-item dependencies 
– described by correlation and substitution measures –, by using understanding of the 
demand driver attributes (might be subjective/qualitative or quantitative), rather than 
inventory and sales transaction data. Below, we summarize the rules that drive inter-item 
dependencies. 
Product attributes (such as colour) that cause the existence of two states of the world for 
some items, paired with uncertainty about market acceptance, drive the negative 
correlations. Similarities on some demand driver attributes, like the existence of specific 
technical features across products and brand preference, drive the positive correlations.  
Finally, understanding of the (dis)similarity between the items with regard to demand 
driver attributes is used to establish the decision independent substitution measures, a 
priori substitutability [ ]1,0∈ijα . This measure indicates the portion of customers willing 
to replace item j with item i. The n items offered are potential substitutes for each other, 
with heterogeneous substitutability values.  
Vaagen et al. (2009) emphasize the distinction between a priori substitutability and the 
true substitution, called factual substitution; this latter being a decision dependent 

  P1 (D1) 

State 1 (S1) 
prob(S1) 

      [ ]1,12,1 +−∈c   
      [ ]1,02,1 ∈α  

  P2 (D2) 

State 2 (S2) 
prob(S2) 

State 1 (S1) 
prob(S1) 

State 2 (S2) 
prob(S2) 

Distribution d1/S1 Distribution d1/S1 Distribution d1/S1 Distribution d1/S1 
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outcome of an optimisation process, constrained by unsatisfied demand and the variants 
available at the moment of customer choice. Further, correlations and substitution 
measures are connected by a common information base. This is also reflected in the way 
these measures are established. For illustration, consider the following example.  The 
supplier is to make assortment decisions on two identical apparel models in colours black 
and navy. Assume the information available for decision making to be: (a) Colour is a 
strong trend driver, and only black or navy will become popular; this can be described by 
a strong negative correlation between their demands (for example -0.5); (b) Due to the 
similarity with regard to ‘model’, if one becomes popular and faces stock-out, it can 
partially be substituted by the available one (say with substitutability of 0.2). Given the 
‘competition’ between the products, and given that ‘colour’ is a much stronger demand 
driver it is unrealistic to assume high substitutability. Observe how this subjective market 
understanding is built into both the correlation and substitution measures.  
 
Despite the inability of Vaagen et al. (2009) to fully describe dependencies among the 
substitute choice possibilities by the suggested substitutability matrix, the presented 
substitution approach, together with the modelling process, allows handling the most 
important dependencies; such as negatively correlated substitute choice possibilities and 
positively/negatively correlated first and second choice possibilities.  
 
Cost and selling prices are assumed to be homogeneous, and not of strategic importance 
within this framework.  By this we do not state these parameters are not important 
demand drivers. What we say is that in trend driven supply chains (such as fashion and 
sports apparel), and within a narrow assortment where competition among the products 
naturally arises, it is increasingly more difficult to influence customers by price.  
 
Finally, for side-by-side comparison of our results with those obtained by RT, we also 
define parameter values as given by RT; particularly, we apply similar simplifications on 
the correlation and substitution values, and on the nature of demand distributions. Some 
important changes from RT are necessary, though.  Firstly, with the demand parameters 
given by the authors the assumption of normal distribution implies the occurrence of 
negative demands with some probabilities. To avoid this, we do not assume normality but 
use log-normal distributions with the same means, variances, and correlation values. 
Secondly, RT replace all correlations with an average value, and vary this average 
between -1 and +1, a simplification leading to impossible correlation matrices (i.e. 
matrices that are not positive semi-definite) for some of their choices. A necessary 

condition for a positive semi-definite correlation matrix is 
1

1
−

−≥
n

c , where c is the 

chosen average correlation and n is the number of items4. In a 7-item case, this gives the 
                                                 
4 A matrix C is positive semi-definite if 0≥CxxT  for all vectors x. Taking a vector x with xi = 1 
and using the fact that the sum of the elements of the matrix C is equal to the sum of its diagonal 
plus  n(n-1) times the average correlation c, we get  

0)1(
1,

≥−+== ∑
=

cnnncCxx
n

ji
ij

T . Re-arranging the inequality then gives the bound 1
1
−−≥ nc . 
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lower-bound of -0.166 on the average correlation. We take this constraint in 
consideration under our parametric analysis.  
 

3. Test cases to demonstrate the value of stochastic 
programming in assortment planning 

 
In this section we demonstrate the value of stochastic programming in assortment 
planning. Particularly, we show that simplifying assumptions on dependencies and 
distributions lead to assortment solutions and profits that substantially differ from those 
obtainable when no substantial simplifications are made. Many existing decision support 
tools and software require major simplifications on these terms. We believe there is a 
need to numerically highlight these shortcomings and use model formulations that 
actually handle this type of complexity; especially important in QR supply chains, such 
as fashion and sports apparel. We first apply a case from sports apparel, where real 
company data is used to directly define and estimate model parameters. Secondly, for 
side-by-side comparison of the behaviour of analytical and numerical model 
formulations, we also solve the retail merchandizing numerical examples provided by 
Rajaram and Tang (2001).  
Our model has been implemented in AMPL with CPLEX as the underlying solver; see 
http://www.ilog.com/ for details on both systems. Since this is a linear programming 
model of moderate size, the solution times are negligible. 
 
 

The sports apparel assortment problem with 15 items  
We implement an assortment problem with 15 items from a leading brand name 
sportswear supplier.  The variants within the group are distinguished by the demand 
driver attributes style and colour, while the specific technical attributes are assumed to be 
necessary to release sales. Substitution is considered within the group. This case is also 
used in Vaagen and Wallace (2008)5, in a related but different setting, newsvendor-risk 
modelling with no substitution.  
 
The demand and dependency measures (correlations and substitutability) are established 
as given in Section 2. Company data and understanding show that there are complex and 
heterogeneous dependencies among the individual items and that about half of the 
                                                                                                                                                 
 
5 Vaagen and Wallace (2008) use the same 15-item assortment case to say something about the profit-risk 
trade-off encountered under different assortment decisions. Although this work identifies distributional and 
correlation model error as a significant risk driver, the numerical analyses differ on several levels. Firstly, 
the Vaagen and Wallace paper focuses on risk modelling. Secondly, based on Vaagen and Wallace, 
exclusively, there is no way to conclude on the value of SP in assortment planning. Particularly, there is no 
way to conclude whether identical results could have been obtained by analytical formulations. This is 
simply because, to the best of our knowledge, the Vaagen and Wallace formulation is the first in the 
literature on the multi-item assortment risk problem, and it is an SP formulation. Finally, substitution is not 
considered by Vaagen and Wallace. As a consequence, this work is not suited to say something useful on 
the value of substitution under distributional/correlation model error. 
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portfolio item demands are bi-modally distributed. Furthermore, based on empirical 
evidence, the state conditioned demands are assumed to be log-normally distributed. We 
assume this case describes the ‘true’ problem, and is denoted Bimodal.  To understand the 
effects of mis-specifying the uncertainty and dependencies, we define additional 
situations, incorrectly assuming uni-modality (rather than bi-modality) in demand 
distributions. Precisely, log-normality is used, with means and variances as in the 
bimodal distributions. We analyse this under three different dependency patterns: a 
correlation matrix with all entries equal to zero, a correlation matrix with all entries equal 
to 0.5, and the assumed ‘true’ matrix with heterogeneous values. The incorrect uni-modal 
cases are denoted LogN-c=0; LogN-c=0.5 and LogN-c=true. The necessary condition for 
a positive semi-definite correlation matrix indicates that homogeneous negative 
correlation values are not to be below -0.071, that is, nearly zero; hence, our choice to 
study the zero-correlation case.  The four test cases are given in table 1.  
 
Profit and production levels are analyzed while varying a homogeneous substitutability in 
[0, 0.5], in addition to using our estimated ‘true’ matrix (denoted mix). Average 
substitutability values over 0.5 are unrealistic across a group of 15 items. Note that the 
test-cases with the true correlation matrix (Bimodal and LogN-c=true), having both 
negative and positive values, are not well suited to directly conclude on the effect of 
correlations. To do this, we compare the test results of LogN-c=0 and LogN-c=0.5.   
 

Table 1 Test cases  

Subcase Marginal 
distributions 

Correlation values -  c 

1  Bimodal bimodal True matrix 
2  LogN-c=0 uni-modal assumed zero correlations 
3  LogN-c=0.5 uni-modal homogeneous values c = 0.5  
4  LogN-c=true uni-modal True matrix 

 

Test results  
Although our test results confirm previous qualitative findings (Rajaram and Tang 2001, 
Netessine and Rudi 2003), they say nothing about the effect of mis-specifying 
distributions, correlations and substitution measures. For this, decisions based on 
incorrect assumptions must be measured relative to the true distributions and 
dependencies. We demonstrate this below, by defining two types of mis-specifications: 
“Substitution model error” and “Distributional model error”, the latter covering both 
correlations and modality of distributions. Finally, we demonstrate the numerical 
formulation’s value in operational variety planning.  
 

Substitution model error 
Here we analyse the effects of mis-specifying substitutability, replacing the ‘true’ 
substitution willingness (mix matrix) by its average (0.15). For all test-cases, the expected 
profit under the average substitutability (as measured within the model) is found to be 
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higher than the expected profit using the mix matrix; see figure 2. The true Bimodal case 
results in almost 15% higher expectation under the average substitutability than under the 
mix matrix (2 478 901 versus 2 166 684). However, this does not provide the true picture. 
If production decisions correspond to the average substitutability, but the true substitution 
willingness describes the world, decision makers will end up over 30% below their 
expectation (1 705 694 versus 2 478 901). Low production levels under average 
substitutability (2498 versus 3112 units; figure 3) − implying low flexibility to adapt to 
changes when the world turns out to be the mix substitution matrix − explain the large 
error in expectations.  
The substantially lower error (12 %) when comparing LogN-c=0.5 within Bimodal is due 
to the strong positive correlation among the items. Substitutability cannot truly be 
leveraged on, as the products mostly face stockout or overproduction simultaneously. The 
optimal plans suggest almost equally high production levels (2995 versus 3087) and, 
hence, we observe reduced profit loss. The effects of substitution, and that of mis-
specifying it, are less significant when the products are strongly positively correlated.  
 
 

           
  

2166684

2478901

1705694
1700000

1900000

2100000

2300000

2500000

2700000

bimodal logN-c=0 logN-c=0,5 logN-c=true

Distribution and correlation

Ex
pe

ct
ed

 p
ro

fit

mix

0.15

true value

 
Figure 2 Expected profit under the ‘mix’ substitutability matrix and its average 0.15, evaluated 

for the four subcases. The lower curve shows the true profit when the average substitutability 
0.15 is assumed, but the world is described by the Bimodal subcase and the mix matrix. 
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Figure 3 Order quantity for the for subcases, under the assumptions of mix matrix and the 

average 0.15  

 

Distributional model error 
Figure 4 illustrates the effects of mis-specifying distributions by incorrectly assuming 
uni-modality when the world is described by bimodal distributions. We evaluate 
production decisions obtained from the uni-modal cases LogN-c=0; LogN-c=0.5 and 
LogN-c=true within Bimodal. Profit loss, then, is evaluated by comparing the results with 
the optimal solution of Bimodal, for corresponding substitution values. 
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Figure 4 Minimal profit error versus substitution for the uni-modal subcases measured within 

the true Bimodal subcase  
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We see, again, that substitution partially compensates for lack of information. Further, 
under no substitution and for most substitution values, the error is lowest when at least 
the true correlations are described; that is, LogN-c=true is used. The heterogeneous 
correlation values in our ‘true’ matrix, and especially the negative correlations, imply 
some hedging, contributing to reduction in error when Bimodal actually describes the 
world.   
 

The evolution of distributional model errors while updating information and re-
optimising production levels accordingly 

Reaction to real-time customer orders is a major focus area of QR planning. Here we 
demonstrate that even when technology and supply chain flexibility allows for 
continuous information and production updates, the underlying distributional and 
dependency assumptions used in the planning models are crucial.  
 
The performance error in the section above is studied under maximal uncertainty; 
assuming that the two states of the world describing the demand uncertainty (Section 2) 
occur with equal probabilities.  In a next step, we measure the negative effects of 
incorrectly assuming uni-modality as information about the items’ market acceptance is 
revealed. In other words, loss in expected profit is evaluated while increasing the belief 
about State 1 (probability (State 1) > 0.5), for the uni-modal cases LogN-c=true and 
LogN-c=0. Production decisions are re-optimized for all cases at hand, and for all 
information levels investigated. The results are summarized by figures 5 and 6. Figure 6 
gives the profit loss when, in addition to the incorrect uni-modal assumption, correlation 
values are also incorrect (assumed to be zero). Although substitution partially eliminates 
the distributional model error, figure 5 shows that, even with very accurate information 
(probability (State1) =0.9), and even when the true correlation matrix is used, 
distributional assumptions are important; the error is up to 16%.  
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Figure 5 Percentage loss in expected profit under subcase LogN-c=true versus Bimodal; − 

evaluated for increasing belief in State 1 for different substitution values.  
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Figure 6 Percentage loss in expected profit under subcase LogN-c=0 versus Bimodal; − 

evaluated for increasing belief in State 1 for different substitution values. 

 
The substantial rise in error under almost full information is caused by the nature of the 
bimodal distributions. Using the same example, without substitution though, Vaagen and 
Wallace showed in 2008 that information needs to be very accurate (over 90% 
probability for one of the states) to lead to important assortment changes, by dropping 
hedging. We now confirm this, under a different but related problem. Drop in production 
levels under almost perfect information for Bimodal reduces costs substantially; hence, 
increases expected profit. This, in order, leads to substantial increase in error when uni-
modal distributions are incorrectly assumed.  
 

The substitutable portfolio structure  
In this section we illustrate the numerical formulation’s usefulness in operational variety 
planning and product line trimming. Table 2 gives the individual item production 
quantities for the bimodal subcase, when varying substitutability. For better visualization, 
production levels under 20 units are eliminated. We observe that the optimal portfolio 
profit implies trimming some of the products. These products, individually, contribute to 
the performance and are initially included in the portfolio. However, their substitutability 
to other products makes them redundant.  
Finally, observe the substantial difference in assortment decisions under true 
substitutability (mix) and when assuming the average 0.15; indicating that the problems 
solved are indeed different.  
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Table 2 Changes in production quantities for different substitutability values 
 

Production quantity per item 
substitutability 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 total

mix 93 579 486 56 197 84 197 243 194 - 172 784 - - 21 3105
0 389 393 393 152 152 152 150 153 153 150 389 347 334 334 358 3999

0.05 354 384 378 161 160 162 167 163 163 52 402 181 45 43 59 2874
0.1 220 410 338 102 111 120 299 190 190 - 179 311 - - 161 2632

0.15 327 426 424 - - - 317 115 123 - 274 376 - - 115 2498
0.2 280 512 508 - - - 333 - - - 314 468 - - - 2415

0.25 155 627 619 - - - 249 26 - - 207 561 - - - 2444
0.3 79 732 734 - - - 128 - - - 100 638 - - - 2411

0.35 - 833 832 - - - 39 - - - 32 658 - - - 2393
0.4 - 839 852 - - - - - - - - 681 - - - 2372

0.45 - 810 875 - - - - - - - - 699 - - - 2383
0.5 - 801 831 - - - - - 21 - - 752 - - - 2404

 
 
We conclude on our test-case, by stating that the assortment is indeed sensitive to the 
nature of demand distributions/correlations and substitution measures. The value of 
substitution is high and compensates, to some extent, for distributional model error; 
however, only when the ‘true’ substitution pattern is captured. We have found up to 30% 
drop in expected profit when simplifications are applied. Further, we show that the 
underlying distributional assumptions are important even when technology and supply 
chain flexibility allows for continuous information and production updates.  
 
Finally, we point out that although model parameters are established by using real data 
and industry understanding, the estimation and optimisation approaches are not yet 
validated by further empirical studies. However, direct comparison of our results and 
those obtained by the present company practices (an ex-post season evaluation) reveal a 
profit increase above 30% by applying the approach presented here (precisely, a net profit 
of 1 387 033 versus our result of 2 166 684). Planning at the case company is based on 
deterministic ERP (Enterprise Requirement Planning), with continuous updates in light of 
real-time customer orders and customer behaviour evaluation. Although the decision 
makers’ subjective understanding reveals substantial intuitive knowledge on the 
uncertainty and dependencies, this is not directly incorporated into the planning process, 
but it is done by art-and-judgment. This is due to the simple fact that there is no 
commonly available software to treat this complexity.  
 

The two- and 7-item examples from Rajaram and Tang (2001) 
Although applying the SP formulation to the RT numerical example does not provide 
empirical evidence on how complex distributions and dependencies affect the 
performance measures and factual substitution, and nothing on what would have 
happened if the true correlation and substitution values were used (as we only have 
simplified data to work with), we find it useful to provide a side-by-side comparison of 
the numerical and analytical models’ behaviour.  
 
For the data applied in the analysis we refer to Rajaram and Tang (2001). Inventory and 
profit levels are investigated for varying substitutability in [0; 1] and varying demand 
correlations in [-1; 1], for different levels of demand uncertainty (Low, Medium, High 
and Mixed variation). Precisely, two independent sets of analyses are performed: one 
with fixed substitutability and a second with fixed correlation value. Although the 
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concrete results for the 7-item example are not stated by RT, we present them for clarity 
of our conclusions. Here we perform one set of analyses with substitutability fixed at 0.4 
and a second with correlation fixed at -0.1. Recall that we follow the necessary condition 
for positive semi-definite correlation matrices and do not apply values below –0.166.  
To avoid negative demands, we do not follow the normality assumption of RT but use 
log-normal distributions. The low-variation data allows for normality though (as the 
probability of negative demand is extremely low). Hence for this case we perform the 
analysis under normal as well as log-normal assumptions (denoted LowN and Low).  
 

Test results  
The proposed numerical formulation provides explicit solutions to the examples of RT, 
and our results confirm, again, the qualitative findings of Rajaram and Tang (2001) and 
Netessine and Rudi (2003). Under substitution, the profit is decreasing in any correlation 
value when order quantities are adjusted optimally as the correlations change. This 
decrease is largest under high variation, and high positive correlation between the items. 
High positive correlation implies that the individual items follow similar demand 
patterns. They become popular, unpopular, or stable at the same time. There is either 
overproduction of all items, or underproduction combined with substantial unsatisfied 
demand. Substitution cannot be leveraged on, despite substitutability. Substitution is 
more beneficial under negatively correlated demands. An illustrative summary of these 
observations in the 7-item setting can be seen in figure 7. The potential profit rise by 
increasing substitutability from zero to 0.2 is given for two distinct correlation values, 
namely 0.4 and -0.1. The profit rise for a given correlation can be interpreted as the 
potential value of strategically designing the products to be each others’ partial 
substitutes with value 0.2. Observe that this value is substantially better under negatively 
correlated demands, especially when there is also High uncertainty in demand. This can 
also be seen in figure 8, showing expected profit levels versus substitutability for 
correlation -0.1.  
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Figure 7 Rise in profit when increasing substitutability from 0 to 0.2, illustrated for correlations 

0.4 and -0.1  
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Figure 8 Expected profit versus substitution for different levels of demand uncertainty, 7-items, 

correlation = -0.1 

 
Hence, we observe that to achieve a competitive variety strategy, the following apparent 
contradiction needs to be resolved: offering items that are distinct but also similar. In 
particular, the assortment items must be (i) distinct on some demand driver attributes 
(producing negative correlations), to achieve hedging by offering own ‘competitors’, and 
(ii) similar with regard to some other demand driver attributes, to enhance substitution 
and, hence, reduce the volatility of the portfolio (i.e. substitutable). We recognize that to 
achieve this, an attribute based product understanding is required, in particular how the 
product attributes create dependencies among the individual products. As such, it is rather 
obvious that complex and varying dependencies must be captured by the models. These 
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patterns are largely lost when assuming average values on correlations and 
substitutability, and hence, whenever such simplifications are required by the chosen 
modelling approach. 
 
As an illustration, consider a group of outdoor performance jackets for the summer 
season, from a leading brand name supplier. Assume that the aggregated level demand is 
rather stable but there is substantial uncertainty in individual item demands. This 
uncertainty stems from ephemeral fashion attributes, such as ‘colour’. Assume that when 
one colour becomes popular the others will be unpopular (described by some negative 
correlation). Furthermore, assume that brand loyalty and specific technical attributes 
across the group make the items (modestly) substitutable. This latter reduces the volatility 
in sales and, hence, contributes to rise in profit.  Modelling such effects require an 
attribute based understanding of products. 
 
 

4. Conclusion 
In this work we demonstrated that common simplifications applied in some analytical 
formulations ― particularly on inter-item dependencies (correlation and substitution 
measures) and on the nature of demand distributions (more precisely, by replacing bi-
modal with uni-modal distributions) ― lead to reduced problem complexity and 
substantial differences in the portfolio structure and in the assortment profit. We notice, 
though, that the value of substitution is high and compensates, to some extent, for lack of 
information; however, only given that the ‘true’ substitution pattern is described by the 
model. We have found that actual expected profit can drop with as much as 30% when 
simplifications are applied. Further, we show that even when technology and supply 
chain flexibility allows for continuous information and production updates the underlying 
distributional and dependency assumptions used in the planning models are crucial.  
 
Furthermore, we demonstrated that stochastic programming has an important role to play 
also in operational variety planning; not just by identifying optimal inventory levels, but 
also suggesting structural changes where appropriate, such as product line trimming. We 
show that the portfolio structure is indeed sensitive to the substitution pattern, and 
simplifying complex dependencies by taking average values, leads to significantly 
different assortment decision. Similar observations have also been seen in financial 
portfolio planning. This is clearly important to highlight when the negative effects of 
variety explosion are substantial for suppliers/retailers, and when the focus is changing 
from ‘increasing variety to satisfy heterogeneous customer needs’ to defining more 
efficient portfolio planning strategies.  
 
The results obtained here are potentially important in assortment planning and could not 
have been achieved by the existing analytical formulations. The findings stem from the 
stochastic programming formulation, and from its very nature of allowing for complex 
distributional and dependency patterns. This latter is partially enabled by the use of 
scenario based distributions. Analytical solutions intend to avoid conclusions based on 
numerical calculations (and as such, the use of scenarios as well), but require major 
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simplifications on dependencies. Although replacing heterogeneous demand correlation 
values by a single value is easier for practitioners to implement, decisions derived under 
such simplifications do not always reflect the assortment problem complexity. Being 
poorly fit for incorporating dependencies, some of the existing analytical models have 
limited potential in even detecting complex effects of mis-specifying these terms. 
Numerical examples constructed to illustrate the analytical models’ behaviour, also 
reflect the same limitations.  
 
We further strengthen the numerical models’ usefulness in assortment planning by our 
qualitative and modelling related observation: To really leverage on the general insight of 
substitution is more profitable under negatively correlated demands, an attribute based 
view of the problem is necessary. Pairing items that are ‘competing’ for market 
acceptance (i.e. negatively correlated) but also ‘similar’ (i.e. substitutable), is far from 
straightforward. It requires knowledge and understanding of how the different product 
attributes (subjective trends or more concrete technical attributes) affect each other and 
the market demand. An attribute based view of the assortment problem is enabled in the 
applied SP approach; particularly, by the specific way inter-item dependencies are 
defined.  
 
 
The stochastic programming approach analysed here is simple and handles real problems 
of substantial size; particularly fitted to treat the complex nature of demand uncertainty 
and dependencies observed in QR supply chains, such as fashion and sports apparel. The 
findings support earlier qualitative conclusions on the substitutable newsvendor problem, 
also under complex distributional assumptions. As a final remark, we mention that our 
substitutability and correlation values describing the dependencies are based on company 
data and qualitative understanding. As such, they are partially subjective and “incorrect” 
due to lack of sufficient trend/product/market knowledge. However, they are not 
completely off and are suited for illustrating the impact of mis-specifying, in our 
understanding, central terms.   
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