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Variable electricity generation from wind and solar in�uences the design
of a cost-e�cient and reliable energy system. This paper presents a method
that uses stochastic programming to represent variable renewable electricity
generation in long-term energy system models, and demonstrates this on a
Norwegian TIMES model. First, we derive hourly PV- and wind-generation
data by modifying satellite-based data, based on a comparison with histori-
cal generation data. Second, the satellite-based dataset is transformed into a
manageable set of scenarios that is used as an input to the stochastic energy-
system model. This is done using six di�erent scenario generation methods.
Third, we solve the energy-system model with three of the scenario-generation
methods and evaluate the quality of the corresponding model value by sta-
bility tests.
We demonstrate that scenarios generated from the six methods have signif-

icantly di�erent moment-based and Wasserstein distance error relative to the
dataset. Further, the energy system model results show that the number of
scenarios needed to achieve stability di�ers between the three used scenario
generation methods.

1 Introduction

Non-dispatchable variable renewable electricity generation (also called intermittent elec-
tricity generation) and electri�cation of end-use are considered as solutions to decar-
bonising the future energy system. However, an increased share of variable renewable
electricity supply, and more unpredictable electricity use, requires �exibility of the energy
system to ensure that the electricity demand is always met. There are several strategies
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that can reduce the mismatch between variable renewable electricity generation and the
electricity demand. First, variation in variable supply can be counteracted by genera-
tion from �exible electricity technologies, such as thermal power and hydropower, and
by use of batteries and by electricity trade. Second, demand can be changed over time
with end-use �exibility by, e.g. fuel switch, demand response and use of local storage.
Consequently, a decarbonised future requires highly integrated energy system between
energy supply, energy infrastructure and end-use sectors.
Long-term energy models can systematize the complexity of a future energy system

and their analysis can thus provide decision support on future decarbonisation pathways.
To ensure reliable model decisions that provides optimal investments, that explicitly
values �exibility, it is necessary to take into account the variable weather dependency
of renewable generation. Stochastic programming is identi�ed in [1] as one modelling
approach to improve the representation of variable renewable energy in long-term energy
models, since it, e.g. captures the need for back-up capacity and �exible solutions. As
demonstrated in, e.g. [2], a stochastic-programming approach can be used to provide
investments that explicitly consider di�erent operational situations that can occur due
to outcomes of weather-dependent renewable generation.
This paper presents a three-step approach to representing variable electricity genera-

tion in long-term energy models, and demonstrates this approach on a TIMES model [3]
of the Norwegian energy system [4]. The �rst step derives a dataset that describes the
variable and uncertain characteristics of renewable generation. This is done by modifying
simulated hourly satellite-based solar- and wind-power generation data, using historical
generation data. The second step transforms the dataset into discrete scenarios which are
used as an input to the energy-system model. Since the computational e�ort increases
with number of scenarios used, it is desirable to use as few scenarios as possible, as long
as the scenarios provides good quality model results.
The third step involves identifying the scenario-generation method that provides a good

representation of the dataset, and evaluating how many scenarios is needed to provide
model results of good quality. This is done �rst by calculating the distance between
the scenario trees and the satellite-based dataset, and by applying stability tests on the
model results. The motivation of the stability tests is to ensure that the results depend
on the dataset rather than the scenario generation methodology itself, and to evaluate
the number of scenarios that are needed to achieve stability.
The main contribution of this paper is the overall evaluation of the dataset, scenario

generation method and the quality of results related to modelling of variable renew-
ables. Thus, this paper is a suitable guideline on how to incorporate variable renewable
generation into long-term energy models by using stochastic programming. A second
contribution is the comparison of the distance-error and stability for di�erent scenario-
generation methods. The �nal contribution is that it is the �rst time the moment-based
scenario-generation method by integer optimization, from [5], is applied and evaluated
in a long-term energy-system model.
In the following, we give an overview of related literature to set our contribution in a

context.

2



1.1 Related literature

Long-term energy models, with endogenous investments, are used to provide insights on
the cost-optimal supply and demand side in future developments of the energy system
[6]. BALMOREL [7, 8], MESSAGE [9], OseMoSYS [10] and TIMES [3] are well-known
modelling frameworks that are designed to generate long-term energy models.
According to [11], a main challenge of long-term energy system models is to �nd the

trade-o� with the resolution in time, in space, in techno-economic detail and in sector-
coupling to provide good decision support. Through a literature review, the authors
conclude that none of the studied long-term energy model have a simultaneous high
resolution in all these �elds. This con�rms that models have limitations, and their
weaknesses should be acknowledged when used to provide decision support. In [6], it
is emphasised that a major challenge of energy-system models with variable renewables
is to balance the temporal and spatial resolution with data availability and computa-
tional tractability. This is, e.g. because a higher temporal resolution requires data at a
high time resolution and increases the computational time of the models. The impact
of the temporal resolution in energy planning models is demonstrated in [12], that con-
cludes that a high temporal resolution is important when modelling variable renewable
resources. The authors show how a model that does not fully consider the variability of
demand and supply can overestimate the amount of demand that is met by variable elec-
tricity generation. This is supported by [13], that demonstrates that a coarse temporal
resolution, when modelling the integration of renewable electricity generation into the
Belgium electricity system, provide sub-optimal investments, overestimating the share of
variable renewables and underestimate the future operating and maintenance costs.
One way of lowering the need for a high temporal resolution in long-term energy models,

is by selecting representative parts, such as weeks or days, of a longer time-series. For
example, [13] demonstrates that the accuracy of an energy-system model can be improved
by using a statistical method to select a set of representative historical days from an
hourly time series of a year. In [13], the selection of representative days is done by using
the so-called Integral Method [14], that involves that the peaks of the representative days,
corresponds to the average peak value of all the corresponding historical days. Another
way of selecting representative days, is done in [15], by using the k-medoids approach,
where an actual observed day, that minimises the distance of the selected day to the
other members of its cluster, is selected. A conclusion of this work is that a clustering
approach can give signi�cant di�erent model results on capacity needs and technology
mix compared to using the Integral Method to select representative days. Further, [16]
demonstrates a generalised clustering algorithm to select representative time periods,
and compares it with three other selection methods, for a power system expansion model
of Northern Europe. In this study, the authors conclude that the performance of the
various methods depends on input data and the number of representative periods.
In the above literature, only hourly renewable generation data for one year is used

to select representative time periods. Thus, these studies do not consider the variations
in renewable generation over several years. Further, the representative time periods are
used to de�ne the model input of deterministic models, that make investment decisions
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based on only one realisation of weather-dependent parameters for each sub-annual time-
slice. Consequently, these models do not explicitly consider the uncertainty of weather-
dependent renewable generation in the optimization. In fact, in a review of modelling
tools, [17] concludes that it is only a small share of the long-term energy-model litera-
ture that takes into account the weather-dependent uncertainty of renewable electricity
generation.
Stochastic programming [18] is a mathematical framework that can be used to explic-

itly model short-term uncertainty of, e.g. variable renewables in optimization models. A
two-stage stochastic model can be applied to provide investments that explicitly consider
parameters that are exposed to short-term uncertainty. A stochastic approach to incor-
porate short-term uncertainty in TIMES was �rst introduced in [19], is demonstrated
in a user guide [20], and was �rst applied to a TIMES model of the Danish energy sys-
tem to consider the short-term uncertainty of wind-power generation [2]. Despite several
later applications of stochastic modelling of short-term uncertainty in TIMES models,
the majority of the TIMES literature uses a deterministic approach [21].
Studies using long-term energy models with a stochastic modelling of short-term un-

certainty demonstrates that the model results di�er to those from a deterministic model.
For example, in a study addressing decarbonisation strategies of the Arctic settlement at
Svalbard [22], the authors demonstrate that a deterministic investment strategy is not
able to meet the energy demand in at least one of the operational scenarios, as the deter-
ministic modelling approach overestimates the contribution from wind energy. Analyses
of the impact of zero energy buildings on the Scandinavian energy system [23] concludes
that a deterministic approach overestimates the competitiveness of variable electricity
generation and underestimates investments in heat capacity in buildings.
A drawback of introducing stochasticity into long-term energy models is that the com-

putational e�ort increases with the number of discrete scenarios. There is also a trade-o�
between increasing the temporal resolution and increasing the number of scenarios. This
is demonstrated in [24] that compares the results of a TIMES model of the European
electricity- and heat market using a deterministic and stochastic modelling approach,
with various temporal resolutions. In this study, a stochastic model with 12 sub-annual
time-slices and 15 scenarios, and a deterministic model with 672 time-slices, both used
about 10 hours to solve, whereas a deterministic model with 2016 time-slices used about
299 hours. The authors conclude that for this model instance, the stochastic model
provides better results, compared to both the deterministic models.
For stochastic long-term energy models, the dataset to describe the variable electricity

generation is derived by using either generation statistics or satellite-based simulations.
[2] derive the wind power availability, also called capacity factor, for both Danish spot
price regions. However, using statistics can be cumbersome when covering a high spatial
resolution or many countries/ regions. The analysis of [24], [25] and [26] are examples
of studies that use Renewables.ninja [27] as a basis for wind- and PV availability for
30 years for most European countries, when analysing the development of the European
power- and heat market towards 2050. Renewables.ninja is an open web application
that is based on the Global Solar Energy Estimator (GSEE) model [28] and the Virtual
Wind Farm model [29], using the MERRA reanalysis [30], biased-corrected using national
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generation data. Another openly available source of data for all European countries is
EMHIRES [31], [32], [33]. It is not clear which of the dataset has the best quality,
although a comparison for selected countries (though not Nordic countries) indicates
that Renewables.ninja is better for wind and EMHIRES is better for PV [34]. Our paper
generates wind time series based on the methodology of [35], applying adjustments to
the Renewables.ninja data, to make it more suitable for Norwegian conditions.
Similar to the literature on selecting representative days for deterministic models,

the literature on stochastic long-term energy models applies several methods to gener-
ate scenarios from a dataset. Random sampling is applied to generate scenarios for a
power-generation expansion model in [36], k-means clustering is used in transmission
and generation planning in [37] and to a power-generation expansion model in [38], and
an iterative moment-based sampling approach is used in, e.g. a TIMES energy-system
models of the European electricity and district heat sector in [24], a TIMES energy-
system model of the Scandinavian energy system [39] and to the EMPIRE European
power-market model in [25].
Most of the stochastic energy literature lacks a discussion on the quality of the pre-

sented model results [21]. This is a weakness, since poor scenario representations can
give results that depend on the scenario representation rather than the characteristics of
the renewable generation. There are, however, studies that acknowledge this weakness.
The authors of [40] acknowledge that the shortcomings of using few scenarios is that they
do not cover the total range of �uctuations in variable generation, and [39] states that
using a higher number of scenarios can improve the quality of the model results.
Executing stability tests on in-sample and out-of-sample stability [41] is a way of

evaluating the solution quality. Stability tests indicate whether the optimal solution
value is skewed by a misrepresentation of the true underlying stochasticity. Stability
tests are used only in a small share of the literature on long-term energy models. [2]
applies both in-sample and out-of-sample stability tests in a Danish TIMES model with
uncertain wind-power production. Although not discussed explicitly, in-sample stability
is tested in numerous studies that evaluate how the model solution value is e�ected by
the number of scenarios used, see, e.g. the power expansion problem in [38] and [42], a
bi-level investment problem for a wind power producer in [43] and a European energy-
system model in [24]. If the scenarios are generated by random sampling, Sample Average
Approximation (SAA) [44] can be used to evaluate the solution quality by providing a
con�dence intervals of the optimality gap for given model solutions. The use of SAA and
stability tests of random sampled scenarios are demonstrated for an energy-system model
of Denmark in [21]. If the scenario generation is based on a clustering method, such as
k-means, the optimality gap of clustered scenarios can be derived. This is demonstrated
in [37] in a power-expansion model covering the west of the Unites States, with uncertain
hydropower, PV, wind generation and electricity demand.
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2 Methodology

First, this section presents the models structure and assumptions of the TIMES energy-
system model, including the stochastic modelling approach. Second, we describe how the
dataset for wind power and PV is generated from satellite- and measured data. Third, we
give an overview of six di�erent scenario-generation methods that transform the dataset
into discrete and manageable model input to the energy-system model. Fourth, we
describe the in-sample and out-of-sample stability tests. Fifth, we introduce a conceptual
�owchart of the methodology that is used in the paper.

2.1 Energy-system model

IFE-TIMES-Norway [4] is a TIMES [3] optimization model of the Norwegian energy
system. TIMES is a bottom-up framework that provides a detailed techno-economic
description of resources, energy carriers, conversion technologies and energy demand. It
is mainly used for medium- and long-term analysis on the global, national and regional
levels, including the IEA Energy Technology Perspective [45]. TIMES models minimize
the total discounted cost of a given energy system to meet the demand for energy ser-
vices for the regions over the period analysed. The total energy-system cost includes
investment costs in both supply and demand technologies, operation and maintenance
costs, and in-come/costs of electricity trade with countries outside Norway.
IFE-TIMES-Norway is a technology-rich model of the Norwegian energy system that is

divided into �ve regions, corresponding to the current electricity market spot price areas,
see Fig. 1. The model provides operational and investment decisions from the starting
year, 2020, towards 2060, with �ve model periods within this model horizon. Each model
period is divided into 96 sub-annual time slices, where four seasons are represented by 24
hours each. The model has a detailed description of end-use of energy, and the demand
for energy services is divided into several end-use categories within industry, buildings
and transport. Note that energy services refer to the services provided by consuming a
fuel and not the fuel consumption itself. For example, the heating demand in buildings
is an energy service while the fuel used to heat the building is not.
Each energy-service demand category can be met by existing and/or new technologies

using di�erent energy carriers, such as electricity, bio energy, district heating, hydrogen
and fossil fuels. Consequently, in each time-slice, the use of energy carriers, such as
electricity, is a model result and not a model input, making sector coupling a part of the
optimization. There are, for example, endogenous investments in heat pumps and electric
vehicles that couple the power sector with the heat and transport sector, respectively. In
total, the demand for energy services can be met by using 400 end-use technologies within
buildings, transport and industry. Other input data include fuel prices; electricity prices
in countries with transmission capacity to Norway; renewable resources; and technology
characteristics such as costs, e�ciencies, and lifetime and learning curves.
The transmission capacity within and outside the Norwegian model region is a model

input that is based on current capacity and ongoing transmission capacity expansion.
Further, there it is an investment option to expand the transmission capacity, both
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Figure 1: Illustration of model regions of IFE-TIMES-Norway, NO1 to NO5.

within Norway and to trading countries. The electricity prices in the model regions in
Norway are endogenous, as they are the dual values of the electricity balance equation,
while the electricity prices in the countries with trading capacity to Norway, including
Denmark, Sweden, United Kingdom, Finland, Netherlands and Germany, is a model
input. Further, we assume these electricity trade prices to be independent of the traded
quantities to Norway.
The model includes two types of hydro plants, Reservoir plants and Run-of-the-river

(ROR) plants that are divided into �ve di�erent types; existing plants and four new plant
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Figure 2: The information structure of a two-stage stochastic model with short-term un-

certainty.

options with di�erent investment costs. The capacity for the existing plants is a model
input whereas the capacity for the new plant options requires endogenous investments.
For the ROR plants, with seasonal dependent electricity generation. As opposed to the
ROR plants, the Reservoir plants are �exible between the time-slices of the model. The
annual electricity generation from the Reservoir plants is constrained by an annual capac-
ity factor, the annual production over the maximum theoretical production over a year.
In addition, we constrain the seasonal electricity generation from the Reservoir plants to
a maximum and a minimum production level according to historical observations.
The existing wind power, and wind power that is under construction is an input to the

model. Further, for each region, new wind power is modelled by ten technology types that
has di�erent costs, operational conditions and upper potentials in each region. Further,
solar power is split into building applied PV on commercial and residential buildings.
A two-stage stochastic framework [18] is applied to provide investment decisions in IFE-

TIMES-Norway that explicitly consider various operational situations that can occur due
to short-term uncertainty in wind and PV generation. Each uncertain parameter is rep-
resented by a set of possible realizations, called scenarios, all having the same probability
of occurring. Further, we apply a multi-horizon model structure, with no dependency
on the operational decisions between the model periods [46]. Figure 2 illustrates the
resulting information structure. The �rst-stage decisions, here investment decisions for
a speci�c period, are made under uncertainty, that is, without knowing the realisation of
the variable electricity generation for the period considered. The second-stage decisions,
here operational decisions, are made after the uncertain parameters of the period con-
sidered are revealed. Hence, there is one operational decision for each of the scenarios.
Consequently, investments are identical for all scenarios, whereas operational decisions
are scenario dependent.
To consider the di�erent operational situations in the optimization, TIMES minimises

the investment costs and the average of the operational costs for all scenarios. This
gives investment decisions that recognise the expected operational cost, and that are
feasible for all the model-speci�ed realisations of the uncertain parameters. Note that
the investment and operational model decisions are made simultaneously for all model
periods, with operational decisions that are contingent on the realisations of short-term
uncertainty. In this paper, it is assumed that the uncertain parameters related to the
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availability of wind and PV generation are the same for all model periods.

2.2 Dataset

The dataset used to describe the short-term uncertainty includes representative capacity-
factor time series of the �ve di�erent spot price regions in Norway, NO1 to NO5, for wind
and PV generation. Capacity factor is described as the ratio of net electricity generated
for a given time period, to the total energy that could have been generated if that plant
would have operated at full-power during the same period of time.
These time series are based on data from Renewables.ninja [47]. Capacity Factor

(CF) series obtained for PV were evaluated as su�ciently accurate in comparison with
individual PV panels and are used as provided. However, local wind conditions are not
accurately represented in Renewables.ninja database due to the interpolation from large
grid units of the database. Therefore, wind speed series obtained from Renewables.ninja
will be adjusted to better represent the local wind speeds in the chosen wind parks
representing the aforementioned regions, and then the adjusted wind speeds will be used
to calculate CF. Individual wind farms have been selected due to the importance of the
speci�c locations of these power plants. For PV, we assume that locations in the centre
of the main Norwegian cities in the spot-price regions are representative for the whole
area.

2.2.1 Adjustments average wind speed from Renewables.ninja

The resolution provided by Renewables.ninja is based on MERRA-2 Wind data: a 0.625
by 0.5 degrees grid (approximately 50 km× 50 km), which can be inexact to represent
local weather phenomena or local geography. The time resolution is 1h and the dataset
is available for 19 years (2000-2018). To improve accuracy for wind parks, new time
series are calculated from the wind pro�les obtained from Renewables.ninja, adjusting
the average wind speed with values from Global Wind Atlas 3.0 that has higher spatial
resolution of 3 km× 3 km [48].
To escalate the new average speeds to the average hub height of the wind parks, the

logarithmic dependence of wind speed with height is used, also used in [35] and described
in [49].
The new adjusted wind speed pro�le v(t) is obtained as

v(t) = vninja(t) ·
vhhub
GWA

vninja
, (1)

where vninja(t) is the wind speed obtained from the MERRA-2 data set from the Re-
newables.ninja API, vninja is the average wind speed of MERRA-2 data set (considering
wind speed data from 2000 to 2018) and vhhub

GWA is the escalated wind speed, from 50m
(where v50GWA is given) to the speci�c average hub height of each individual wind park.
To obtain production time series from the wind-speed time series, a turbine power curve

is used, depending on the installed technology and model. The curves were obtained from
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Table 1: Input data used for the Renewables.ninja API for the selected wind parks and
wind speed scaling parameters. Cwp is the installed wind park capacity in MW,
hhub is the hub height (in m), v50GWA is the average wind speed from GWA at 50m
in m/s and z is the roughness length in m.

Wind park Area Lat. Long. Turbine model Cwp hhub v50
GWA z

Marker NO1 59.499 76 11.732 501 Vestas V136 3.45 54 142 5.61 1.5
Raskiftet NO1 61.208 037 11.758 786 Vestas V126 3.6 111.6 117 5.84 0.5

Lista NO2 58.157 056 6.711 444 Siemens SWT 2.3 93 71.3 80 7.52 0.2
Høg Jæren NO2 58.642 712 5.763 826 Siemens SWT 2.3 93 73.6 80 7.96 0.2

Ytre Vikna NO3 64.900 572 10.891 87 Enercon E70 2300 39.1 64 7.95 0.05
Valsneset NO3 63.818 975 9.623 031 Enercon E70 2300 11.5 64 8.13 1.5

Flakken NO4 70.100 411 20.106 254 Vestas V90 3000 54 80 6.46 0.5
Kjøllefjord NO4 70.922 16 27.281 894 Siemens SWT 2.3 82 39.1 70 7.34 0.05
Raggovidda NO4 70.763 249 29.084 506 Siemens SWT 3.0 101 45 80 9.32 0.05

Midtfjellet 1 NO5 59.930 537 5.372 79 Nordex N90 2500 85 100 7.31 0.2
Midtfjellet 2 NO5 59.930 537 5.372 79 Nordex N100 2500 25 100 7.31 0.2
Midtfjellet 3 NO5 59.930 537 5.372 79 Nordex N100 3300 39.6 100 7.31 0.2

[50] and [51]. In order to represent a wind park, the previous power curve is smoothed
using the methodology and parameter values in [52].

2.2.2 Representative wind generation

Wind parks selected to represent each spot-price region are listed in Table 1. The longi-
tude and latitude for the locations is given with all decimals to allow a replication of the
results, as the MERRA-2 grid is interpolated to the exact given location (see [28]).
Finally, despite the adjustments described above, there is signi�cantly di�erences in

the average satellite-based CF and the historical CF, as shown in Table 2. To take this
to account, all the hourly satellite-based CF values were adjusted, by multiplying with
one value, such that the average CF of the dataset corresponds to the annual CF values
of the historical generation.

2.2.3 PV time series

In order to get representative PV capacity-factor time series for the di�erent Norwegian
trading regions, representative orientations and tilt angles have been selected. CF time
series have been obtained from Renewables.ninja database through the API. The time
series provided an acceptable yearly correlation when comparing to four PV installations
in southern Norway (three in NO1 and one in NO2) and one in the very north, in the
city of Tromsø (NO4), between 0.72 and 0.93. Thus, no adjustments were performed. In
Table 3, the input data for the Renewables.ninja API is summarised for the chosen lo-
cations (the most representative cities Oslo, Bergen, Trondheim, Kristiansand, Tromsø).
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Table 2: Final reference capacity factor (average capacity factor in the area provided by
NVE [53]) used to de�ne representative wind pro�les for each of the regions.
Average CF for NO5 is based on concessions exclusively, since no wind park has
been installed yet

Area Average CF Generated CF

NO1 0.39 0.47
NO2 0.37 0.46
NO3 0.36 0.35
NO4 0.35 0.26
NO5 0.39 0.42

Table 3: Di�erent solar system con�guration considered (above) and the main cities rep-
resentative of the Norwegian electricity trading regions (below)

Installation type Orientation Tilt(°)

Roof (�at) East-West 10
Roof (inclined) South 30

Location Region Lat.(°) Long.(°)

Oslo NO1 59.91406 10.75208
Kristiansand NO2 58.159912 8.01822
Trondheim NO3 63.430519 10.39507
Tromsø NO4 69.649204 18.95532
Bergen NO5 60.39126 5.322064

Additionally, the system losses have been assumed to be 10 % for all cases and all systems
are �xed (no tracking).

2.3 Scenario generation

In this section, we present several methods for representing the data series of wind and
solar capacity factors as scenarios that can be used by optimization models. All methods
come from [5] and are based on the same idea: select S historical days, such that the
multivariate distribution of capacity factors across the S sequences is as close to the
overall empirical distribution as possible. The reason we want to use whole sequence,
consisting of 24 hours of a day, instead of the usual approach of sampling from an
estimated stochastic process, is to ensure that the sequences are realistic both in terms
of inter-temporal dependencies and dependencies/correlations between parameters and
regions.
Since there are signi�cant seasonal di�erences in distributions of the capacity factors,

we generate one set of scenarios per season. Note that this implies assumption of in-
dependence between seasons. Moreover, the scenario-tree structure of TIMES (Fig. 2)
dictates that corresponding scenarios have the same probability in the four seasons. We
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achieve this is by generating equiprobable scenarios, i.e., require that all scenarios have
probability 1/S.

2.3.1 Random and Iterative sampling

The easiest option is to simply sample (randomly select) S sequences for each of the four
seasons. We will refer to this approach as Random sampling. It is very fast, taking only
a fraction of a second. The main weakness of this method is that we can end up with a
highly non-representative sample, in particular for smaller S.
One way to improve this is to repeat the sampling N times and then use the `best'

sample�we refer to this variant as Iterative Sampling. To select the `best' sample, we
need some measure of the sample `quality'. One option is use some distance between the
scenario distribution and the distribution of the whole data set. In this paper, we follow
[2] and use the di�erence between the �rst four marginal moments plus correlations as
the distance. Since stochastic programs typically react stronger to errors in means and
weaker for the higher moments [54], we use the following weights for the four moments
and correlations: 10, 5, 2, 1; 2.

2.3.2 k-means clustering, standard and constrained

Another option is to use k-means clustering [55, 56] to divide the data into S clusters,
and select a representative scenario from each cluster. For the latter, we simply use
the scenario closest to the cluster's mean. The advantage of k-means is that it is a
standard method with many available implementations and that the method is fast. On
the other hand, there is no guarantee that the resulting scenarios constitute a good
approximation of the distribution. This is further aggravated by our requirement of
equiprobable scenarios. The last issue can be addressed using the constrained k-means
clustering method from [57], which allows for constraints on cluster sizes.

2.3.3 Optimizing distance in moments and correlations

Instead of using Iterative sampling, where the best of N samples are selected, we can
use mixed-integer linear programming to select the historical days, by minimizing the
distance in moments and correlation, see [5]; we refer to this method as Optimization.
Binary variables are used for selecting the days, and we express all moments and cor-
relations as linear combinations of E[Xk]. These, in turn, can be written as a linear
combination of the binary selector variables and corresponding powers of the data, giv-
ing a linear model, see [5] for details. Unfortunately, the resulting models cannot be
solved to optimality for realistic problems with data spanning more than a couple of
years, since we need one binary variable per day. With our data set, this means between
1625 and 1656 binary variables, depending on the season.
On the other hand, since the Optimization algorithm is doing an `intelligent search', it

should �nd good solutions faster than using `blind' sampling. In theory, it also has the
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advantage of providing bounds on the distance from the best possible selection, but this
bound is often very loose, and thus unusable, in practical cases.1

2.3.4 Wasserstein distance

Instead of using moments and correlations, one can measure the distance of the scenar-
ios from data using the Wasserstein distance [58, 59, 60]. Since exact minimization of
Wasserstein distance is not possible for real-life problems, we have implemented a variant
of Algorithm 2 from [61], which we initialize by Voronoi sets implied by a randomly-
generated sample. See [5] for details.

2.4 Stability tests

We evaluate the quality of the scenarios using stability tests from [41], since scenarios
represent an approximation of the dataset. Moreover, any scenario-generation method
involving randomness will add variability to the solutions of the problem, as the trees
will di�er between consecutive runs. We want both the approximation error and the
variability from the scenario-generation to be as small as possible.
[41] introduces two tests: the in-sample stability test investigates whether a scenario

generation method creates a set of scenarios that consistently result in approximately
the same objective function, when used to solve the problem with di�erent scenario sets
generated from the same input. Furthermore, there should not be too large discrepancies
in the optimal value when the number of scenarios, S, increases.
The goal of the out-of-sample stability test is to measure both stability and quality

of the solutions obtained when using scenarios from a given method. In principle, the
test requires the use of the whole dataset, though in practice one commonly uses an
approximation [41]. We will refer to this approximation as a benchmark tree. We solve the
optimization problem on the benchmark tree with �rst-stage decisions �xed to the values
from a given scenario-based solution; the resulting objective value is an approximation
of the quality of the solution.
As with the in-sample tests, we want small variability from scenario sets generated

with the same input. If we can solve the optimization problem on the benchmark tree,
we can also use the di�erence between the scenario-based solutions and the optimal value
as a measure of quality of the scenario-based solution.

2.5 Methodology �owchart

Fig. 3 shows a conceptual �owchart of the methodology used in this paper to illustrate
the interactions between the dataset, energy system model, scenario generation methods
and stability tests.
First, the dataset, consisting of 19 years of hourly capacity factors of wind and PV

is the input to six di�erent scenario generation methods. Each scenario methods gen-
erate a set of scenarios consisting of 3, 9, 15, 21 and 30 number of scenarios. Then,
1In general, the optimization-based method has an additional advantage of being able to optimize the

probabilities as well, allowing for a better match.
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Figure 3: Conceptual �owchart of paper methodology

the resulting scenario trees are compared based on a moment-based and a Wasserstein
distance. Thereafter, we use three of the six scenario generation methods as an input to
the energy-system model. Finally, the corresponding optimal values of the model results
is used to test for in-sample stability whereas the optimal solutions is used to test for
out-of-sample stability on a bench-mark scenario tree from the Optimization scenario
generation algorithm.

3 Results and discussions

First, this section compares the scenario generation methods in terms of runtime and
moment-based and Wassersten distance. Thereafter, in-sample and out-of-sample stabil-
ity are used to evaluate the quality of the results.

3.1 Scenario generation

We generate 24-hour scenarios from the data presented in Section 2.2 for 15 capacity
factor series; hourly capacity factors for wind power, residential PV and commercial PV
for the �ve model region of IFE-TIMES-Norway.
One way to handle the time dimension is to consider values for each hour as a separate

time series, resulting in 24×15 = 360 series. This means that the clustering methods will
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Figure 4: Runtime of the di�erent scenario-generation methods, with (left) and without
(right) time aggregation. Note the logarithmic scaling for times over 1 second.
The `Iterative sampling' method was run with 2500 iterations. Times for Opti-
mization are not shown, as it was run with a time limit of 900 seconds that was
reached in almost all cases.

work in dimension 360 and all moment-based methods need to evaluate 4× 360 = 1440
moments and 360 × 359/2 = 64 620 correlations, and to match all this with just 3�30
equiprobable scenarios.
An alternative way to dealing with the time dimension is to aggregate the values

and use daily averages, reducing the dimension to 15 and the number of moments and
correlations to 60 and 105, respectively. While we give up control over the intra-day
distribution, the lower dimension should allow for a better match, so it is not clear which
approach will produce better scenarios. Moreover, some of the methods run signi�cantly
faster in the lower dimension.

The scenario-generation was implemented in Python: k-means clustering uses KMeans
class from scikit-learn, the constrained k-means method uses
https://adared.ch/constrained-k-means-implementation-in-python/, and the optimiza-
tion model was implemented in Pyomo [62] and solved using FICO� Xpress solver version
8.8.0.

3.1.1 Runtime comparison

Scenario-generation runtimes on a PC with 2.8 GHz Intel CPU and 16 GB RAM are
presented in Fig. 4, for S ∈ {3, 9, 15, 21, 30}. All values are average of 10 runs. In each
run, we generate scenarios for all four seasons separately and report run-time of each
generation. Hence the results are an average of 40 values, and the time to generate
scenarios for all four seasons is four times the reported values.
The �gure does not include the runtime for Optimization, as it was run with a time

limit of 900 s. In the aggregated case, it reached the time limit in all but two instances,
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Figure 5: Moment-based distance of scenarios with aggregated data

so the reported results are not optimal solutions. In the case without time aggregation,
the model gets so large that we do not even get a feasible solution within the time limit.
In the rest of the paper, we therefore use scenarios from the aggregated case.
As depicted in Fig. 4, random sampling, k-means and Wasserstein-based methods are

both fast and una�ected by the dimension of the input vector and the number of scenarios.
The runtime of Wasserstein-based method is actually faster with more scenarios, possibly
because it gets easier to obtain a good match. The constrained-k-means method is
slower and its run-time increases with the number of scenarios. Run-time of the iterative
sampling depends on the selected number of iterations, N . In addition, it increases with
dimension, from under 50/2500 = 0.02 seconds per iteration in the aggregated case (dim.
15) to 500/2500 = 0.2 seconds per iteration in the full case (dim. 360). This is expected,
as the moment-based distance evaluation is the most time-consuming part of the method.

Note that the requirement for a fast solution time to generate stochastic scenarios are
less important for long-term energy models that is used for planning purposes, compared
to operational models that generate new scenarios on a more frequent basis. Also, the
stochastic assumptions on wind and PV capacity factors in energy-system models is a
static model assumption, that does not need to be updated if the data basis is unchanged.

3.1.2 Comparison of measured distribution error

Next, we compare the generated scenarios in terms of the computed distance in moments
and correlations. We run each method 10 times, M = 10.
Since Optimization gives the same solution on each run, we generate an additional set

of scenarios for Optimization on a di�erent machine, with a di�erent version of Xpress
(v. 8.9.2).
The results are presented in Figs. 5 and 6 for scenarios with and without aggregation,
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Figure 6: Moment-based distance of scenarios with non-aggregated data

respectively. There, we can see that:

� Iterative sampling is best among the analysed scenario generation methods in all
the tested cases.

� Optimization is the next-best method for all variants with at least 9 scenarios. It
is very close to Iterative sampling for 21 and 30 scenarios with aggregation and 30
scenarios without aggregation.

� There is very little di�erence between standard and constraint k-means, so the
extra runtime of the constrained method is probably not justi�ed.

� The Wasserstein-distance-based method is not much better than Random sampling.
However, we have to remember that this method optimizes a di�erent distance
measure, so it is not a fair comparison.

Since the evaluation uses the same distance that the optimization model tries to min-
imize, one could ask why it is not best every tested variant. There are three reasons for
this:

� In most of the runs, Xpress reached the time limit before �nding the optimal
solution.

� As pointed out above, Optimization becomes too di�cult to solve without aggre-
gation, so we use the results with aggregation for both variants. This means that
in all non-aggregated cases, the evaluation distance di�ers from the optimized one.

� The model uses an LP approximation of the distance [5]. In particular, in all the
moment formulas including (X − µ̂)k/σ̂k, we replaced the actual sample values µ̂,
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Figure 7: Wasserstein distance of scenarios with aggregated data

σ̂ (which would be variables in the model) by their target values (which are pa-
rameters of the model), to keep the model linear. This implies that the model's
evaluation of the higher moments and correlations is exact only if the mean and
standard deviation is matched exactly�yet this is impossible with only few scenar-
ios. This explains why the optimization method gets better, relative to the other
methods, as the number of scenarios increases.

If we use the Wasserstein metric to measure the discretization error, the order of the
methods changes, as illustrated in Figs. 7 and 8. This distance prefers both variants
of k-means, followed by the Wasserstein-based heuristic. This is to be expected, since
k-means can be seen [5] as a heuristic for minimizing Wasserstein distance of order 2
with an Euclidean metric�which is what we use.
This illustrates that one should not select a scenario-generation method based solely

on the statistical properties of the generated scenarios, because we do not know upfront
which properties are important for the model at hand. Instead, we need to solve the
model on the trees and see which method produces trees that give the `best' results.

3.2 Energy-system model results

In this section, we use the scenarios to solve the TIMES energy-system model. Unfortu-
nately, the TIMES model takes up to several days to solve for the largest instances, so
we had to limit the scenario-method selection. For this reason, we test only the following
three methods:

� Iterative sampling (with 2500 samples), as this is a method tested with TIMES
earlier.

� Optimization, since it is an attempt to improve Iterative sampling.
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� Random sampling, as a simple benchmark.

However, this does not necessarily indicate that the three methods are the best suited
scenario generation methods for long-term energy models.
We use the trees generated in the previous section, which gives us 2 × 10 + 2 = 22

scenario trees. With �ve scenario sizes, S ∈ {3, 9, 15, 21, 30}, this means 22 × 5 =
110 di�erent candidate instances, in addition to a deterministic model consisting of one
scenario with average values.
The optimization of the TIMES model was carried out with a 2.2 GHz Xeon Silver

4114 Intel processor with 96 GB RAM, using the CPLEX solver with the Barrier solution
method. All but one thread, i.e. 19 threads, were available for CPLEX.

3.2.1 Energy-system model runtime

The median runtime of the energy-system model for the candidate instances are presented
in Fig. 9. Note that the runtime depends on the selection and customisation of solver
and the number of threads used.
Clearly, a deterministic model, with only one scenario, has a signi�cantly lower runtime

than the stochastic candidates. For example, the deterministic model uses 2.4 minutes,
whereas the runtime for S = 15 mediates on 694 minutes and S = 30 mediates on 5382
minutes (corresponding to about 3.7 days).
The primary reason for limiting the number of scenarios to S = 30 in this study is

that we consider the runtime of this case to be on the limit of what is practical for an
energy-system modeller. We also experienced that our computer did not have enough
memory when we ran the model with S = 60.
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Figure 9: Number of equations and variables in the model and CPLEX solution times, as
a function of the number of scenarios.

3.2.2 In-sample stability

The in-sample stability is illustrated in Fig. 10, where the optimal objective function
value, represented by total system cost in billion EUR, is plotted for all candidate in-
stances.2

The percentage di�erence among the instances is relatively small since the objective
function includes a signi�cant share of costs that are not related to wind and PV power.
Nevertheless, the absolute di�erence between the instances is considerable, where the
largest di�erence between the instances is 4 655 million EUR, observed between one
instance with S = 3 and another instance with S = 9, both generated with Random
sampling.
The in-sample stability is improved with a higher number of scenarios for all the

three scenario generation methods. Optimization has the lowest deviation of the system
cost among the candidate instances and has relative stable solution from 15 scenarios
or more. The system costs for Optimization, in million EUR (MEUR) is 951 892 and
952 054, 951 788 and 951 970, and 951 978 and 952 013, respectively for S = 15, 21 and
30. Due to that we consider the performance of Optimization to be best among the three
methods, we will use the �rst instance using Optimization with S = 30 as our benchmark
solution in the following. This implies that we here assume that this benchmark tree is
a satisfactory representation of the true distribution.
As expected, random sampling has the highest deviation of system cost among the

ten instances of a given scenario size, where the deviation is signi�cantly reduced when
the number of scenarios is increased. The di�erence in energy-system cost between the
highest and lowest value, in MEUR, is for example 4232, 2154, and 967 respectively for
S = 3, 15 and 30. For comparison, the di�erences between the highest and lowest value

2Four of the 111 instances were reported by the solver as optimal, but with infeasibilities after unscaling.

We have included these instances in �gures and description below.
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Figure 10: Illustration of in-sample-stability. Total system costs in billion EUR for all
candidate instances. The boxes illustrates the 25-75 percentile with median
marked as a line within each box for the scenarios with the same S created
with the same method. The dots represent the candidate scenario trees, M .

for Iterative sampling is MEUR 2029, 984, and 913 for the same S.

3.2.3 Out-of-sample stability

For the out-of-sample stability test, we �x the investment decisions from each of the
candidate instances and solve the model on the benchmark scenario tree (S = 30 and
Optimization).
The out-of-sample stability is depicted in Fig. 11 and Fig. 12 as the optimality gap. The

gap is the di�erence between the total system cost of the benchmark and the candidate
system cost. Consequently, the benchmark solution has a gap of zero and is therefore not
included in the �gures.3 One of the candidate solutions (S = 3 and Random sampling)
was infeasible on the benchmark tree. This implies that the investment decisions from
this instance provides a solution that is not able to meet the energy-service demand.
Note that the optimality gap is above zero for all instances. This implies that there

will be an additional energy-system cost if the investment decisions are based on another
scenario-generation method than the benchmark.
For all S, investments made with the scenarios generated with Optimization give the

lowest optimality gap. Also, going from S = 3 to S = 9 gives a notable reduction in the
gap for all generation methods. The results demonstrate that using Optimization gives
good model results with nine or more scenarios.

3.2.4 Renewable investment strategy

The stability tests are based on evaluating the optimal objective function value and
not on the model solution itself. This is because a model can provide almost identical

3In 24 of the 111 instances, the solver reported �nding the optimal solution, but with infeasibilities

after unscaling. These instances are included in the reported results.
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Figure 11: Illustration of out-of-sample-stability. Optimality gap in billion EUR between
the benchmark and the benchmark scenario tree with �xed capacities from the
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Figure 12: Detail of Fig. 11 in the y-axis between 0 and 0.18 billion EUR.

objective function values and have two di�erent investments strategies (if the objective
function is �at). Nevertheless, model insights from energy-system models are primarily
based on model solution and not on the corresponding optimal energy system cost.
Fig. 13 shows the PV capacity of all instances in 2040. The results show larger de-

viation among the instances for the Random sampling generation method compared to
the other methods. For example, the standard deviation of PV capacity for Random
sampling is 3.9 GW, 0.73 GW , 1.3 GW for S = 3, 15 and 30 respectively. There are
also signi�cant di�erences in the expected capacities between Random sampling and the
other two scenario generation methods when using few scenarios (S = 3 and 9) whereas
the di�erences becomes smaller when using more scenarios. For S = 30, the capacity
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Figure 13: PV capacity in 2040 for all instances. The boxes illustrates the 25-75 percentile
with median marked as a line within each box, whereas the dots represent the
candidate instances.

ranges from 10.9 GW to 15.1 GW, 13.0 GW to 14.6 GW and 13.2 GW to 13.4 GW
for Random sampling, Iterative sampling and Optimization among the scenario trees
respectively. The corresponding �gure of the wind capacities for the candidate instances
are demonstrated in Fig. 14.
The results demonstrate that the design of the stochastic scenarios has larger impact

on the investments in PV than for wind power. For example, the di�erence between the
highest and lowest wind capacities is 2.03 GW, both from model solutions considering
instances with 3 scenarios created with Random sampling. For PV, the same di�erence
is 12.3 GW, also found in model solutions considering instances with 3 scenarios created
with Random sampling. Another notable di�erence between the capacities for PV and
wind is that for all S, the di�erence between the standard deviation of capacities between
Random sampling and Iterative sampling is larger for PV than for wind. For example, for
S = 21, the standard deviation for wind and scenarios created with Random sampling
and Iterative sampling is 0.220 GW and 0.171 GW respectively. The same standard
deviations for PV is 1.19 GW and 0.411 GW.
Solution of the deterministic model has less wind power and more PV capacity, com-

pared to the stochastic model instances. For example, using Optimization and 30 sce-
narios, the deterministic model results has 18.5 % higher PV capacity and 2.7 % lower
wind power capacity in 2040 compared to our benchmark solution.

4 Conclusions

This paper presents an approach to analyze variable wind and PV generation by stochas-
tic modelling in long-term energy models, and demonstrates this approach on a TIMES
model of the Norwegian energy system.
We observe a satisfactory match when we compare satellite-based data with historical
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Figure 14: Wind capacity in 2040 for all instances. The boxes illustrates the 25-75 per-
centile with median marked as a line within each box, whereas the dots represent
the candidate instances.

generation for PV but not for wind power. To take this mismatch into account, we modify
the data series for wind generation to better consider local conditions for Norwegian wind
parks. This implies that using satellite based renewable generation data uncritically in
energy-system models, without comparing with production statistics, can give misleading
model insights.
The distribution error between the satellite-based dataset and scenarios generated

by six di�erent scenario generation methods is evaluated. We observe that the perfor-
mance ranking among the scenario generation methods di�ers if a moment-based or a
Wasserstein distance is used. For our case, the moment-based iterative sampling method,
Iterative sampling, performs best related to moment-based distance, whereas k -means
performs best related to the Wasserstein distance. Since the distribution error depends
on the method it is measured on, it demonstrates that it is challenging to select the best
performing scenario generation method by solely investigating the statistical properties
of the scenarios.
To evaluate the performance of the scenario generation methods, related to the quality

of the model results, we test in-sample and out-of-sample stability by solving the energy-
system model with scenarios generated by three di�erent scenario generation methods.
We demonstrate that the runtime of the energy-system model highly depends on number
of scenarios, and conclude that the optimal scenario generation method is the method
that provides stability by using as few scenarios as possible. Among the scenario gen-
eration methods used, the moment-based scenario generation method by integer opti-
mization, Optimization, has the best stability, providing relatively good in-sample and
out-of-sample stability with 15 scenarios. Further, we observe that model results with
scenarios generated by Iterative sampling is considerably more stable than by using ran-
dom sampled scenarios.
There are opportunities to further improve the performance of the tested scenario gen-
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eration methods. Iterative sampling can be improved if the number of samples increases,
and since Optimization can control the scenario-probabilities, allowing for scenarios to
have di�erent probabilities, would most likely improve the scenario quality from this
method.
To increase the knowledge on what is best performing scenario generation method,

we propose that future research perform stability tests for more scenario generation
methods than what is done in this paper. Further, to provide more robust conclusions
on the quality of each scenario generation method, we suggest testing for out-of-sample
on several alternative benchmark trees.
The number of scenarios that is required to achieve stability, and the best performing

scenario generation method can also depend on the characteristics of the energy system
that is modelled. To investigate this assertion, the method of this paper can be applied
to other models that cover energy systems that has di�erent characteristics than the
Norwegian energy system, that has �exibility through the large hydro reservoirs. Fur-
thermore, the number of scenarios that is required to achieve stability can be in�uenced
by the temporal resolution of the energy-system model. The trade-of between a higher
temporal resolution and number of stochastic scenarios that is needed to achieve stability
is therefore an interesting topic for further research.
There are several limitations of the stochastic energy system analysis of this paper.

First, we only included a stochastic modelling of the short-term uncertainty of wind
and PV generation, despite that other types of uncertainty can have an equally large
impact on the optimal energy system design. For a Norwegian energy system perspective,
the short-term uncertainty of hydro in�ow, heat demand and European power prices
can have a great impact. On the other hand, it is straight forward to include other
uncertain parameters to the methodology that is presented in this paper. However,
a challenge by including more uncertain parameters, is to derive a consistent dataset
that ensures correlations. A second limitation of the analysis is that the modelling
does not include end-use �exibility options, such as stationary batteries, thermal storage
and �exible charging of electric vehicles. Suggestions for future research is therefore to
evaluate how including end-use �exibility in�uences the scenario characteristics that is
required to provide a solution of good quality.
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