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Shape-based Scenario Generation using Copulas

Michal Kaut∗ Stein W. Wallace†

September 2009

Abstract

The purpose of this article is to show how the multivariate structure (the “shape” of the dis-
tribution) can be separated from the marginal distributions when generating scenarios. To do
this we use the copula. As a result, we can define combined approaches that capture shape with
one method and handle margins with another. In some cases the combined approach is exact, in
other cases, the result is an approximation. This new approach is particularly useful if the shape
is somewhat peculiar, and substantially different from the standard normal elliptic shape. But it
can also be used to obtain the shape of the normal but with margins from different distribution
families, or normal margins with for example tail dependence in the multivariate structure. We
provide an example from portfolio management. Only one-period problems are discussed.

Keywords stochastic programming scenario generation copulas

Introduction

Stochastic programming has become a common tool to study and model decision problems with
the presence of uncertainty. These models are usually based on the use of multivariate probability
distributions describing the uncertainty in the input data. The exact or approximating methods that
are important for applications mainly deal with discrete empirical probability distributions that are
described by a list of realizations (called scenarios) and related probabilities. See Wallace and Ziemba
(2005) for a discussion of modelling as well as applications.

In most applications, the multivariate distributions do not come in a form suitable for the opti-
mization model, being either continuous, discrete with too many data points, or specified by a set
of statistical properties. Hence, to use a stochastic programming model, one has to transform the
given distribution to scenarios—a process known as scenario generation. There exist many differ-
ent scenario-generation methods, each with its strengths and weaknesses, see for example Dupačová,
Gröwe-Kuska, and Römisch (2003), Heitsch and Römisch (2003, 2009), Høyland and Wallace (2001),
Høyland, Kaut, and Wallace (2003), Pflug (2001). For an overview, see Dupačová, Consigli, and Wal-
lace (2000).

In recent years, we have been studying—and using—scenario-generation methods that use the
first four moments to describe the marginal distributions and the correlation matrix to describe the
multivariate structure; see Høyland et al. (2003), Kaut, Wallace, Vladimirou, and Zenios (2007).
While our experience shows that in many applications four moments provide a sufficient control over
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Figure 1: Scatter plot of fortnightly returns of US small caps vs. UK small caps. The left fig-
ure shows the actual data, the right figure the data with margins transformed to standard
normal distribution, to demonstrate that the asymmetry is not caused by the marginal dis-
tributions.

the marginal distributions, the usefulness of correlations is much more limited. The reason is that
a correlation—or more precisely the Pearson’s correlation coefficient—describes only the degree of
linear dependence between two random variables. It does not capture any non-linear dependencies,
and it does not tell us anything about the “shape” of the multivariate structure. In a sense, using the
Pearson correlation implicitly means assuming the elliptical shape of the normal distribution.

On the other hand, several recent studies—e.g. Hu (2006), Longin and Solnik (2001), Patton
(2002, 2004)—point out that some financial data are not elliptical, showing for example higher cor-
relations for downturns than for upturns (all markets tend to crash together). This is illustrated in
Figure 1, which shows a scatter-plot of fortnightly returns of US and UK small cap stocks, using data
from Morgan Stanley Capital International Inc. (MSCI). To demonstrate that the asymmetry does not
come from the marginal distributions, we present also a plot of returns with margins transformed to
the standard normal distribution.

Another example is the joint distribution of electricity prices and rainfall in countries with a sig-
nificant proportion of hydro power (like Norway): in a dry year, the prices are almost guaranteed to
be high, while in normal and wet years they can be both high and low, depending on other exter-
nal factors. While we are not aware of studies from other areas, we find it likely that significantly
non-elliptical structures can be found in many practical settings. Consider for example agricultural
production in a given region: in “normal” years, the correlations between the productions of different
crops can be expected to be small—or even negative, if the crops prefer different conditions. However,
in a bad year (drought, flood) all the crops will fail, driving the correlations to one.

In this paper, we propose a general framework that can, at least in principle, generate scenarios
with any multivariate structure. In addition, we propose several methods that fit into the framework
and can be used in different cases. The framework is based on copulas, a concept that has been used
in statistics and finance for some time—see for example Bouyé, Durrleman, Nikeghbali, Riboulet,
and Roncalli (2000), Clemen and Reilly (1999), Rosenberg (2003)—yet remains virtually unknown
in the rest of the OR community. To our knowledge, copulas have not yet been presented as a basis
for scenario generation. We discuss only one-period problems in this paper, but some of the ideas can
be used also in multi-period settings.

The rest of the paper is organized as follows: In the first section, we present the main results from
the copula theory and discuss what it can offer for the scenario-generation problem. In the Section 2,
we present the general framework, which is then tested in Section 3.
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1 Copulas and their place in scenario generation

This section presents the notion of a copula and the main results from copula theory. In addition, it
shows what this means for scenario generation.

1.1 Definitions and main results

The name copula was first used in Sklar (1959) to describe “a function that links a multidimensional
distribution to its one-dimensional margins”. The mathematical formulation comes from Sklar (1996)
and Nelsen (1998).

An n-dimensional copula is the joint cumulative distribution function (cdf) of any n-dimensional
random vector with standard uniform marginal distributions, i.e. a function C : [0,1]n→ [0,1]. Sklar’s
theorem states that for any n-dimensional cdf F with marginal distribution functions F1, . . . ,Fn, there
exist a copula C such that

F(x1, . . . ,xn) =C
(
F1(x1), . . . ,Fn(xn)

)
.

Moreover, if all the marginal cdfs Fi are continuous, then C is unique. For the proof, see Sklar (1996).
An immediate consequence of the theorem is that, for every u = (u1, . . . ,un) ∈ [0,1]n,

C(u1, . . . ,un) = F
(
F−1

1 (u1), . . . ,F−1
n (un)

)
,

where F−1
i is the generalized inverse of Fi.

An important property of the copula is that it does not change under strictly increasing transforma-
tions of the margins. This allows us to transform margins from one continuous distribution to another,
without changing the copula: if the margin X̃i has a cdf Fi, then G−1

i

(
Fi(X̃i)

)
has cdf Gi, and the copula

does not change since both Fi and G−1
i are increasing.

This also means that any statistical property that depends only on the copula is invariant to strictly
increasing transformations of the margins. An example of such a statistics is the Spearman’s (rank)
correlation—while the ‘standard’ Pearson’s linear correlation is invariant only under positive linear
transformations.

For the simplest example of a copula, consider two independent random variables X̃1 and X̃2
with F(x1,x2) = F1(x1)F2(x2). The associated copula is then C(u1,u2) = u1u2, i.e. the cdf of two
independent standard uniform random variables.

Another example is the Gaussian copula, i.e. the copula of an n-variate standard normal distribu-
tion with correlation matrix Σ:

CΣ(u1, . . . ,un) = ΦΣ

(
Φ
−1(u1), . . . ,Φ

−1(un)
)
,

where ΦΣ is the joint cdf of the multivariate normal distribution.

A special case, which will be needed later in the paper, is the so-called empirical distribution, i.e.
a discrete distribution described by a matrix of equiprobable outcomes X = (xis). Its marginal cdfs are
given by

Fe
i (x) =

∣∣{s : xis ≤ x}
∣∣

nS
,

where |A| denotes cardinality of a set and nS is the number of scenarios (samples). Assuming that xis

are distinct in every margin xi, the cdfs evaluated at the sample points xis are equal to

Fe
i (xis) =

rank(xis,xi)

nS
,
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Figure 2: Empirical copula. The top-left figure presents five sample points from a distribution with
margins X̃∼N(0,1) and Ỹ∼exp(1) and the top-right figure the distribution of ranks of the
sample. The bottom-left figure shows the data transformed to standard uniform margins
by applying the marginal cdfs and finally the bottom-right figure shows the sample trans-
formed using the empirical cdfs–the empirical copula. Note that the empirical copula is
equivalent to the distribution of the ranks: the only difference between the two right-hand
side figures is the scale of the axes.

where rank(xs,x) is the rank (order) of value xs in a vector x (also denoted ord(xs,x)), with values
between 1 and nS. Similar relation holds for the copula of the empirical distribution—which we refer
to as an empirical copula—evaluated at the sample points:

C
( k1

nS
, . . . ,

kn

nS

)
=

1
nS

∣∣∣{s : xis ≤ x(ki) ∀i ∈ {1, . . . ,n}
}∣∣∣

=
1
nS

∣∣∣{s : rank(xis)≤ ki ∀i ∈ {1, . . . ,n}
}∣∣∣

where x(k) is the k-th smallest element of vector x. In other words, the empirical copula is uniquely
described in terms of ranks of the original sample. This is further illustrated in Figure 2, where the
empirical copula can be fully described as follows: create the bi-variate sample by pairing up the x(1)
with y(5) (i.e. the smallest xi with the biggest y j), x(2) with y(4), x(3) with y(1), x(4) with y(2) and x(5)
with y(3). We will use this way of describing an empirical copula later in Section 2.

For more information about copulas, see for example Clemen and Reilly (1999), Nelsen (1998),
Sklar (1959, 1996). In addition, useful information can be found in User’s Guide to the Statistics
Toolbox for Matlab®.

1.2 Advantages of using copulas for scenario generation

Since the copula is obtained from the joint cdf by transforming the margins to the standard uniform
distribution, it can be seen as the joint distribution stripped of all information about the margins. What
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is left is information about the multivariate structure—none of this information is lost by transform-
ing the margins. Copulas therefore allow us to de-couple the margins from the overall multivariate
structure, and model these two independently.

This means, for example, that we can generate the margins using standard sampling and/or dis-
cretization methods for univariate distributions, giving us a degree of control that no general multivari-
ate method (that we are aware of) can provide. Hence, even without any special copula-based tools, we
can expect that sampling only the multivariate structure (shape) and using better tools for the marginal
distributions will give better results than sampling directly from the multivariate distribution—an ex-
pectation that is confirmed by our numerical experiments later in the paper.

The de-coupling of the multivariate structure from the marginal distributions opens new possibil-
ities for scenario generation, some of which are listed here:

Combining different (standard) copulas and margins

If we compare the normal distribution with t distributions with a small number of degrees of freedom
ν , the most obvious difference is in the tails of the marginal distributions. There is, however, also one
important difference between the two implied copulas, i.e. between the multivariate structures: the t
distribution exhibits a tail dependence, defined as follows: A bivariate random vector (X̃1, X̃2) with
marginal cdfs F1 and F2 is lower-tail dependent if its lower-tail dependence coefficient

λL = lim
u→0+

P
{

X̃1 ≤ F−1
1 (u)

∣∣ X̃2 ≤ F−1
2 (u)

}
is strictly positive (providing the limit exists). Upper-tail dependence λU is defined analogously
and is equal to λL for all elliptical distributions. Figure 3 shows the tail-dependence for several t-
distributions, computed using formulas from Embrechts, Lindskog, and McNeil (2003). As we can
see, the t-distributions exhibit tail-dependence, while the normal distribution, i.e. the limit case ν→∞,
is tail-independent as long as the correlation is strictly smaller than one; for a formal proof, see Em-
brechts et al. (2003). In other words, if we draw a sample from a multivariate normal distribution
and see that one of the variates is from the lower tail of its marginal distribution, the probability that
another variate will also be in the tail is converging to zero as we move further “down” the tail. This
implies that a simulation model using normal distributions is unlikely to produce scenarios with sev-
eral margins with extreme values, even if we have enough samples to observe extreme values in each
of the margins separately.

Using the definition of conditional probability, we can easily express the lower-tail dependence as
(Joe, 1997, pp. 33)

λL = lim
u→0+

P
{

X̃1 ≤ F−1
1 (u) and X̃2 ≤ F−1

2 (u)
}

P
{

X̃2 ≤ F−1
2 (u)

} = lim
u→0+

C(u,u)
u

.

It follows that the tail dependence is a function of the copula and does not depend on the marginal
distributions, so it is possible to create, for example, distributions with normal margins and t copula
structure, i.e. normal margins with tail dependence. Note that the margins are not limited to normal
distribution, each margin can even have a different type of distribution.

Introducing asymmetry

Instead of the standard t copula, we can use a copula from one of the skew-t distributions. These
distributions allow for several types of asymmetric dependencies, the most important of which is the
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Figure 3: Tail-dependence coefficient λ of t-distribution, as a function of the correlation coefficient
ρ and number of degrees of freedom ν . Note that λ → 0 with increasing ν , as long as
ρ < 1. Since the normal distribution is a limit case of t-distribution for ν → ∞, it implies
that it has λ = 0 for all ρ < 1.

possibility to have higher correlation on the down-turn than on the up-turn—an effect we have already
mentioned in connection with financial data.

Unfortunately, there are several different skewed versions of t distributions, each with different
strengths and weaknesses. For information about the most important ones, see for example Adcock
(2010), Azzalini and Capitanio (2003), Bauwens and Laurent (2005), Demarta and McNeil (2005),
Jondeau and Rockinger (2003), Jones (2001). In addition, there is the non-central t distribution and
Pearson Type IV distribution. For information on the latter, see Heinrich (2004).

Assuming that we are able to estimate the parameters for the chosen skew-t distribution, we can
generate a sample from this distribution and then transform the margins, obtaining asymmetric depen-
dency with arbitrary marginal distributions.

Using principal components

In many applications, it can be argued that there are too many random variables in the model, and the
dimension could (and should) be reduced by techniques like principal components analysis (PCA).
In addition to decreasing the dimension of the stochastic vector, the principal components are also
uncorrelated—and therefore, in the case of normal distributions, independent. This means that sce-
narios for the individual principle components can be generated independently, converting the multi-
variate scenario generation to a much easier univariate generation problem. (The univariate margins
can be combined into the multivariate vector in an all-against-all fashion, or by a random coupling of
the margins. With the former, the number of scenarios grows exponentially with the dimension of the
random vector, often resulting in a need to use a scenario-reduction procedure afterwards, while the
latter yields scenarios that are only approximately independent.)
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Figure 4: Bi-variate distribution with margins x̃1 = ξ̃1, x̃2 = ξ̃1ξ̃2, with ξ̃1, ξ̃2 ∼ N(0,1), indepen-
dent. The left figure shows a sample from the random vector x̃ = (x̃1, x̃2), the right figure
its principal components, scaled to variance equal to one. The principal components were
computed from a sample of 25,000 points, but the plots show only the first 1000 points
for better readability.

For other than normal distributions, however, the principal components are only uncorrelated, so
there is still some dependency structure to be captured. This is illustrated in Figure 4, where the two
principle components are clearly not independent, despite having zero correlations. Yet, as long as
we use correlations as the only description of the multivariate structure, we are not able to make the
distinction between uncorrelated and independent random variables and therefore cannot model the
structure properly. It is therefore easy to forget the distinction between uncorrelated an independent.

Copulas, on the other hand, are capable of capturing the structure properly, allowing thus the use
of principal components also for non-normal distributions. It is also possible that the distributions
of principal components have qualitatively different structures than those of the underlying random
variables, something that could be taken care of by the copula-based approach. This is, however, out
of the scope of this paper and is left for future research.

1.3 Stability and Optimality gap

The ultimate test of the quality of a scenario tree will be how well it fits the corresponding stochastic
program. This can be measured in terms of optimality gap, i.e. the difference in expected perfor-
mances of the “true” optimal solution and the solution obtained from a stochastic program using the
scenario tree in question. Unfortunately, this is usually impossible to measure exactly, because the
true optimum is unknown. As a result, the quality of a scenario tree has to be estimated in some
indirect way.

It is not the purpose of this paper to discuss that issue, but we would like to point out that there
are several ways to estimate the quality of a scenario tree. Obvious possibilities are to compare the
scenario tree directly to the underlying distribution, using metrics from probability theory—see for
example Heitsch, Römisch, and Strugarek (2006)—or comparing (optimal) values of the relevant
optimization problem, hence using the optimization problem as a metric. In the latter case, the per-
formance of the scenario-based solutions can be evaluated using either a simulator—as in Kaut and
Wallace (2007)—or a confidence interval on the optimality gap, obtained by solving several optimiza-
tion problems—see Bayraksan and Morton (2006), Chiralaksanakul and Morton (2004), Linderoth,
Shapiro, and Wright (2006).
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2 The method

In this section, we present the scenario-generation method. The goal is to generate nS samples from
a given n-variate distribution, i.e. a matrix X ∈ Rn,nS of outcomes. We will call the empirical copula
associated with the outcomes a scenario copula, to distinguish it from the empirical copula of the
input data. We will use the fact that a discrete copula can be equivalently described as a coupling of
ranks of the margins, as explained in Section 1.1.

2.1 Basic structure

The method consists of two parts, which can be done independently of each other:

1. Create the scenario copula, described in terms of the ranks of the margins. In other words, we
want a set of nS scenarios, each consisting of the ranks of values we want to use from each of the
n margins. For example, one scenario may be “take the minimum of margin 1, third-smallest
value of margin 2, etc”. This can be done in several different ways:

• Sampling from the true distribution (or its approximation) and computing the ranks of the
values, one margin at a time. For each margin, we replace the values of the outcomes by
their ranks inside the vector of all the outcomes for the given margin. This is the method
used in tests in Section 3.

• Using some parametric family of copulas, with parameters estimated from historical data.
Since this is a more complex approach, we describe it in more detail in Section 2.3.

• Using an optimization approach to directly couple the ranks in a way that minimizes some
distance from the target distribution. One possible implementation could be a ‘property-
matching” NLP model along the lines of Høyland and Wallace (2001).

2. Generate the values of each margin. This is a standard and well-studied problem, so we only
list the two approaches used in the tests in Section 3:

• Using a prescribed discretization of the marginal distributions. For example, if we know
the marginal cdfs Fi, we start with some discretization {u1, . . . ,unS} of the standard uni-
form distribution and let xis = F−1

i (us). In our case, we have used us =
2s−1
2nS

, which is
optimal in the Kolmogorov-Smirnov sense, as opposed to us =

s
nS+1 commonly used in

the copula literature.
• Compute marginal moments from the historical data and use a transformation-based moment-

matching method to transform the scenarios to match the moments: for example, to match
the first four moments we use the cubic transformation from Fleishman (1978), in the way
described in Høyland et al. (2003).

Once we have both the structure (copula) and the values of the margins, the only thing that remains
is to connect the margins in the way specified by the coupling of ranks. Note that this is easiest done
if the margins are sorted.

2.2 Details and comments

Controlling the correlations/covariances

Controlling the structure using a copula means that we can only influence measures that depend on the
copula, such as the Spearman’s rank correlations. We cannot directly control the “standard” Pearson’s
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correlations, as they depend on both the copula and the margins.
If we need exact correlations, we can use the moment-matching algorithm from Høyland et al.

(2003) as a post-process, setting the correlations to the desired values, while preserving (most of the)
shape of the margins by controlling their first four moments. Since the process involves Cholesky
transformation of the data, it will invariably distort the copula. The severity of the distortion will
depend on the size of the errors to be corrected, small corrections should not change the structure
noticeably.

Relation to the moment-matching algorithm by Høyland et al.

If we require control of moments and correlations, we can use the scenarios obtained by the copula-
based method as a starting point for the moment-matching algorithm from Høyland et al. (2003). In the
context of this paper, the algorithm can be seen as a method that takes a starting sample and transforms
it to a sample with specified first four moments of the marginal distributions and a given correlation
matrix. This is achieved by an iterative application of two transformations: a cubic transformation to
correct the moments of the margins and a matrix transformation using a Cholesky component of the
correlation matrix to correct the correlations.

In our implementation of the algorithm, the starting sample is a fixed discretization of N(0,1)
distributions, but we also have the option to provide a starting sample externally. We can thus test
whether the new copula-based approach provides a better starting point than the default sample. Note
that the new starting sample can be expected to be better than the default sample both in terms of the
copula and the marginal distributions. To test only the influence of a better copula, we can use the
copula-based method to generate a starting sample with N(0,1), so the two starting samples differ
only in the copula. Results of these tests are presented in Section 3.

An alternative interpretation of the method

There is an alternative (but equivalent) way of looking at the presented method in the case where we
use the inverse cdfs to get the target distributions. Instead of representing the copula as the coupling
of ranks (used to couple the pre-generated margins), we can transform the values from {1,2, . . . ,nS}
to { 1

2nS
, 3

2nS
, . . . , 2n−1

2nS
} to get a sample of the copula in the classical sense. Then we just apply the

inversion method on the margins to get the target marginal distributions.
Instead of two independent parts plus a final assembly step, we now have a method with two steps:

first generate scenarios for the copula and then transform the margins to their correct distributions. In
this sense, the method is closer to the transformation-based algorithm from Høyland et al. (2003),
with one important difference: the correction of margins does not change the copula, so there is no
need for an iterative procedure.

In particular, if we use sampling to get the scenario copula, the method can be interpreted in
the following way: sample one value xis from the i-the marginal distribution and transform it to the
standard uniform distribution using the discrete cdf Fc

i defined as

uis = Fc
i (xis) = Fe

i (xis)−
1

2nS
,

where Fe
i is the standard empirical distribution function described in Section 1.1. The second term

is due to the fact that Fe
i puts the probabilities at points s

nS
, while our discretization needs them at

2s−1
2nS

= s
nS
− 1

2nS
. The obtained uis then becomes a sample from the i-th margin of the scenario copula,
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Figure 5: Standard sampling versus sampling the scenario copula and transforming the margins.
The left figure is the same as the top-left plot in Figure 2 and shows the original sample.
The right figure shows the scenario copula from the right-hand side of Figure 2, trans-
formed back to the original distribution using the marginal cdfs. Note how the marginal
values form a regular discretization of the respective marginal distributions, N(0,1) and
exp(1)—unlike the original sample, where the second component has too many small
values.

so we can transform it back to the original distribution using the inverse cdf,

yis = F−1(uis) = F−1 (Fc
i (xis)) ,

to get a new sample from the i-th margin of the original distribution. We then repeat the procedure for
all margins i and scenarios s.

Since F−1 is not an inverse of Fc
i , y’s are different from x’s. In other words, there is a difference

between sampling the scenario copula and transforming its margins using the marginal cdfs, and doing
standard sampling, as illustrated in Figure 5. The difference comes from the fact that Fc

i spreads the
values evenly on the interval (0,1), so the inverse transformation results in a sample with values spread
evenly in terms of percentiles.

2.3 Some information on copula families

One of the methods for generating the “scenario copula” mentioned in Section 2.1 involved using
parametric families of copulas. Here, we present more details about both the copula families and
how they fit in the presented scenario-generation framework. Readers who are not interested in this
particular approach may proceed directly to the next section.

Copulas, just like distributions, have many parametric families with specialized methods for gen-
eration. Once we have decided for a particular copula, we have to estimate its parameters from the
historical data and then use an appropriate method to create a sample from the copula. The best
source of information on copula families is probably Nelsen (1998), other options include Bouyé
et al. (2000), Hu (2006), Romano (2002).

In addition to the copula families, it is possible to use copulas from some standard distribution
like normal or t, or the skewed versions of t distributions mentioned in Section 1.2. In this case, we
generate a sample from the given distribution and then transform it to a copula in the same way as in
the previous section.

Note that the transformation to copula removes all information of the marginal distributions, so
only the copula (structure) of the chosen distribution remains. This means, for example, that we do
not have to estimate the scale parameters, as they do not influence the copula. In other words, the
normal copula depends only on the correlations, the t copula in addition on the degrees of freedom,
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and the skewed version of t in addition on the skewness parameter(s). Furthermore, the skewness
parameter(s) are used only to control the asymmetry of the skewed-t copulas, they have no relation
to the skewness of the final distribution (again, because the marginal distributions are removed by the
transformation to copula). This is illustrated in Figure 6 where the distribution remains skewed even
when the margins are transformed to the standard normal distributions. For comparison, we present
also a distribution obtained by combining the skewed-t margins with a standard normal copula. Note
that unlike the skewed-t distributions, the extreme values do not happen together when we use the
same margins with the normal copula. This is in concordance with the fact that the normal copula
does not exhibit tail dependence, as mentioned in Section 1.2. For more information on using copulas
of standard distributions, see for example Demarta and McNeil (2005), Romano (2002).

3 Case study – portfolio optimization with CVaR constraint

In this section, we test several variants of the scenario-generation method on a portfolio optimization
model with a CVaR constraint. It is a one-period LP model, with positive variables (positions) that
sum up to one. The LP formulation of the CVaR constraint comes from Rockafellar and Uryasev
(2000) and Uryasev (2000).

Notation
I The set of financial instruments.
Ps Probability of scenario s ∈ {1, . . . ,nS}.
Rs

i Return of asset i in scenario s.
β Confidence level for CVaR; in our case, β = 0.95.
C Minimal feasible value of CVaR.
xi Decision variables – proportion invested in instrument i ∈ I.
α Auxiliary variable; equal to VaR at the optimal solution.
zs Variables used for modelling CVaR; zs ≥ 0.

Using the above notation, the model can be formulated as

max
xi

∑
s

Ps
∑

i
Rs

i xi ,

subject to

∑
i

xi = 1 , (1)

zs +∑
i

Rs
i xi ≥ α , (2)

α− 1
1−β

∑
s

Ps zs ≥C , (3)

where (1) is a budget constraint and (2) and (3) are the CVaR-defining constraints from Rockafellar
and Uryasev (2000) and Uryasev (2000).

The CVaR model has been chosen because it can be expected to react to differences in the shape
of the distribution, particularly the shape of the lower tail of the return distribution. Two sets of data
were used for the model: the main data set consists of daily prices of seven stock indices and three
government bonds, from 1987-07-09 to 2005-04-05 (4476 points). This data set was kindly provided
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by Kjetil Høyland from DNB Nor, Oslo, Norway. The second data set consists of 1302 daily prices
of 10 stock indices, obtained from MSCI.

The price differentials (asset returns) from the historical data are used as the true distribution for
the optimization problem, i.e. the distribution that the scenarios are supposed to be samples from. This
implies that we can compute the true value of any statistical property of the return distribution. Hence,
when we in the following text say that we “correct”, for example, the mean of the scenarios, we mean
that we transform the scenario distribution to match the mean of the historical returns. Naturally, if
we did not know the correct values of these properties, the corrections would not be possible.

We have used sampling from the historical data to get the scenario copula in Step 1 of the algorithm
presented in Section 2, and the fixed discretization of margins in Step 2. The method was compared
to sampling, (both with and without correction of means and variances) and the moment-matching
algorithm from Høyland et al. (2003). We have also tested the effect of correcting correlations—
together with the first four moments—by running the moment-matching algorithm as a post-process.
In addition, we have tested whether the moment-matching method benefits from starting from the
scenario copula, in the way described in Section 2.2. Combining the different methods gave us thirteen
different scenario-generation methods to test.

3.1 The tests

Since we model CVaR as a constraint, our objective function consists only of the expected return. The
in- and out-of-sample objectives are therefore equal as long as scenarios have the correct means—
which in our case they have, except in the case of direct sampling from historical data. In addition, the
CVaR constraint is, almost by definition, active, so the in-sample CVaR values are on their bounds.
As a result, we measure the performance of a solution by the difference between the in- and out-of-
sample values of CVaR, instead of the objective values. In particular, we call a scenario-generation
method biased if the tree it produces leads to a consistent difference between the in- and out-of-sample
CVaR values. For example, the middle chart in the third row of Figure 7 shows a result of a biased
scenario-generation method.

For the main data set, we have tested stability with two different values of the CVaR lower-bound
C, one close to the minimum-risk value, and one more risky. For the MSCI data only one CVaR value
was tested. Three different sizes of scenario trees were used in each case: 50, 250, and 1000 scenarios.
In each case, one hundred scenario trees were generated, the model solved on them, and the solution
evaluated on the reference tree consisting of the whole data set. We could thus perform both the in-
and out-of-sample tests as described in Kaut and Wallace (2007), focusing on stability and bias. In
addition, since it was possible to solve the model on the reference tree, we were able to obtain the
“true” optimal solution and thus compute the optimality gap caused by the scenarios.

The CVaR model was written in the GNU MathProg language (a subset of AMPL) and solved
by glpsol, both parts of GNU Linear Programming Kit (GLPK). The other tests were implemented
in GNU Octave, a high-level language mostly compatible with Matlab. Finally, Gnuplot was used to
produce the charts to visualize the results of the simulations.

3.2 The main result

Out of the thirteen tested combinations of the copula-based methods and post-processes, the one that
performed consistently best in terms of both stability and bias was a combination of the copula-based
method using inverse cdfs and a post-process correcting both the marginal moments and correlations.
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Table 1: Out-of-sample stability for the results presented in Figure 7. The first part of the table
shows the standard deviation of the objective function values, multiplied by 10 000, the
second part shows the standard deviation of CVaR values, multiplied by 100.

std. dev. of obj. (×10000) std. dev. of CVaR (×100)

nS sampl. mom. copula sampl. mom. copula

50 8.72 5.66 4.89 1.81 1.33 1.41
250 3.49 2.74 2.01 0.73 0.52 0.42

1000 1.75 1.31 0.83 0.38 0.24 0.18

Table 2: Out-of-sample CVaR and its bias for the results presented in Figure 7. The first part of
the table shows the average out-of-sample CVaR values, the second part shows the bias
of CVaR, i.e. the difference between the average CVaR and its target value C = −0.2.
Numbers in the second part are multiplied by 100 for better readability.

average CVaR bias of CVaR (×100)

nS sampl. mom. copula sampl. mom. copula

50 -0.218 -0.224 -0.226 -0.83 -2.36 -2.63
250 -0.203 -0.206 -0.201 -0.33 0.40 -0.14

1000 -0.201 -0.190 -0.200 -0.09 0.97 -0.03

3.3 Other observations

It is not possible to present the results of all the tests, so we present results only for the most “im-
portant” methods: sampling with correction of means and variances, moment-matching, and the best
copula-based method. The results of tests on trees with 50, 250, and 1000 scenarios, based on the
main data set, are presented graphically in Figure 7 and numerically in Tables 1 and 2. Both the figure
and tables can illustrate most of the following observations—even if the observations themselves are
based on results of all the tests (all methods, all data sets, all sizes of scenario trees):

• For trees with 250 and 1000 scenarios, the copula-based method outperforms the corrected sam-
pling and the moment-matching approach both in terms of stability and bias of CVaR. With 50
scenarios, however, it leads to a bias in CVaR that is comparable to the one of moment match-
ing. This is probably due to the fact that with only 50 scenarios, the sample produced by the
method itself has correlations that are significantly different from the target, so the correlation-
correcting post-process distorts the copula too much.

• As expected, pure sampling of the historical returns performs poorly, though it can be improved
significantly just by correcting the means and variances of the margins. Correcting moments
and correlations further improves the performance of the sampled trees.

• The moment-matching method with default starting point leads to one of the most stable meth-
ods, but can introduce a bias. This is due to the fact that with no extra information, the method
will use normal distributions as its starting point and thus generate scenarios with structure close
to the normal copula. When the data has significantly different structure, this approach leads to
a bias in the results. In Table 2, as well as in the last row of plots in Figure 7, we can see that the
moment-matching for 1000 scenarios led to smaller risk than required. However, in the case of
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CVaR constraint at C =−0.25 (instead of C =−0.2), the moment-matching resulted in a port-
folio with a higher-than-required risk. This illustrates that the bias caused by moment-matching
is unpredictable, including the sign of the bias.

• Using the sample copula and N(0,1) margins as a starting point for the moment-matching pro-
cedure decreased the bias compared to using the procedure on its own. This was to be expected,
as it gives the moment-matching algorithm a better approximation of the true copula – see the
previous point.

Note, however, that this method was used only for the purpose of testing the effect of a better
copula on the moment-matching procedure. Other than that, it makes little sense using normal
margins, as long as we have a better approximation of the marginal distributions. (Even if we
use the moment-matching as a post-process, it is beneficial to start as close to the true marginal
distributions as possible, since the cubic transformation used to correct the margins may not be
strictly increasing and can thus distort the copula.)

• As expected, using a post-process to control some statistical properties improves the stabil-
ity of the optimization problem. Furthermore, the improvements increase with the number of
controlled properties, i.e. controlling four moments is better than controlling just means and
variances and can be further improved by controlling correlations as well (using the alg. from
Høyland et al. (2003)).

Conclusions

In this article, we have shown how to separate marginal distributions from the multivariate structure—
the copula—when generating scenarios. This way we can combine different approaches which, sepa-
rately, may be good (or even applicable) for only one of these factors. By this separation of margins
and copula it is, for example, possible to sample from the underlying distribution to obtain an approx-
imation of the structure, while not having to rely on the same sample for margins. The margins can
then be set up with methods that are better suited to handle them, but which are possibly even unable
to handle multivariate structure. Our example from portfolio management indicates that such an ap-
proach is indeed a good idea: for the example at hand, the best approach was to combine sampling
from the copula with a post-process correcting the marginal moments and correlations.
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Figure 6: Skewed-t distribution and copula, using a skewed-t variant from Azzalini and Capitanio
(2003) with 5 degrees of freedom and skewness parameters (−0.5,−0.9). The first two
rows show the two-dimensional scatter plots and marginal densities, respectively. The
third row shows a distribution obtained by combining the skewed-t margins with a stan-
dard normal copula. In other words, the marginal distributions in the second row corre-
spond both to the first and the third row. Note that the distribution shown in the bottom-
right figure is a standard normal distribution. The reason there seems to be only one line
in the second and third figure in the second row is that in those cases both margins have
the same distributions, U(0,1) and N(0,1), respectively.
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Figure 7: In-sample and out-of-sample properties of three selected scenario generation methods,
on trees with 50, 250, and 1000 scenarios, based on the main data set. On the x-axis is
CVaR, on the y-axis the objective function values. The in-sample values are scattered
along a vertical line CVaR =C =−0.2, caused by the constraint on CVaR. The rest of the
points represent the out-of-sample values and the line represents the “true” CVaR-efficient
frontier. Note that the in-sample values can be above the efficient frontier, since they do
not represent the true objective values of solutions.
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