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Abstract

This paper presents a method for pricing multi-variate options using non-recombining
trees. The trees are generated using a moment-based approach, so no distributional
assumptions are needed. To apply the method, the user has to know the properties
(moments and correlations) of the risk-neutral distributions of returns of all the assets
the options depend on.

European options are priced on single-period trees, the path-dependent options on
multi-period trees. We provide exact formulas for generation of trees without any inter-
period dependency of the return distributions. With inter-period dependency, we provide
only an ex-post correction procedure.

Keywords: non-recombining trees, option pricing, multivariate options

1 Introduction

Currently, the two most common approaches for option pricing are the Black & Scholes
continuous-time framework, and Cox, Ross, Rubinstein discrete-time approach using binomial
(recombining) trees. While the former is an exact formula for European options, the latter
is an approximate approach used mainly for path-dependent options (for example American
and Bermudian options). Both of the approaches have, at least in their “classical” versions,
the disadvantage of assuming that the asset returns are normally distributed. Recently, there
have appeared attempts to drop the normality assumption, both in the theoretical B&S-like
context (see for example [12, 24]), and in the context of binomial or trinomial recombining
trees ([21, 5, 6, 22]).

Yet, most of the methods can price only options depending on one asset. In the recent
years, however, several types of multi-variate options (also called basket options) have ap-
peared. An example is the option to buy the better of two indices. Methods for pricing
such options were also presented, yet most of them are based on the normality assumption.
Beyond normality, the pricing tools are still scarce: [3] provides a theoretical derivation for
pricing of bivariate options, while [18, 19, 20] price bivariate options using binomial trees. All
of these methods are based on copulas as a description of the multi-variate distribution.

In this paper, we provide a method for pricing general multi-variate options, using non-
recombining multi-period trees. We do not make any distributional assumptions, and use a
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moment-matching approach for construction of the trees. Hence, the method may be useful
in contexts where a description of the risk-neutral distribution by moments and correlations
is more natural than using copulas – for example because we do not have enough informa-
tion/data to estimate the copula, or we want to avoid the various assumptions (on type of
copula, or on the density function of the marginals), needed for the copula estimation.

In addition to the multi-period algorithm, we show how the moment-based approach
provides an easy way to price multi-variate European options, using large one-period trees.

Since we use non-recombining trees, we face the usual “curse of dimensionality”, i.e.
the exponential grow of the tree with the number of periods. However, with the presented
algorithm we can process a tree with a quarter of billion terminal nodes in approximately
half a minute on a 1GHz PC. This number of nodes corresponds to a 12-period tree with five
branches per node—if there is a need for a significantly finer time-discretization, the method
is thus not applicable.

In the binomial trees, the risk-neutral distribution (probabilities) are computed directly
from the prices and the risk-free rate. For non-recombining trees with more than two branches,
however, this is no longer possible and we need to know the risk-neutral distribution in
advance. Typically, the risk-neutral distribution is estimated from historical option prices.
In this paper, we assume that we have already made the estimation, and thus know the
risk-neutral distribution—or, more precisely, its moments and correlations. For information
about recovering the risk-neutral distribution from historical option prices, see for example
[11, 7, 19, 20].

The moment-based approach is simpler than the copula-based approaches mentioned
above. However, our results show that there is a price for the simplicity: For some of the
basket options, the quality of the multi-variate structure of the return distribution becomes
very important. In such cases, correlation coefficients may not be enough to describe the
dependencies, and the resulting prices become only approximations. The method is thus best
suited for cases where either the copula approach is not applicable, or only an approximation
of the option prices is needed. As an example of the latter, consider the case of real options,
where the risk-neutral distribution often is not known perfectly, so only an approximation of
the price is obtained regardless of the method used.

The rest of the paper is organised as follows: in Section 2 we show how to price multi-
variate European options. The rest of the paper concerns multi-period trees for pricing
of path-dependent options: Section 3 presents an efficient generating/pricing procedure for
multi-period trees, including a numerical results. In Section 4, we discuss ways of controlling
the distribution in the final period of a multi-period tree by adjusting the distributions of the
one-period subtrees it consists of. Section 5 presents and discusses stability of the obtained
prices with respect to the choice of the tree, and, finally, Section 5 concludes the paper.

2 European options

European options can be exercised only at a one given time, so their prices are determined by
the distribution of prices at the exercise time, together with the initial parameters. Hence,
when we price an European option using a tree, only the root and the distribution of the last
period affect the price. It is thus enough to use a single-period tree.

As we will see later, it is not trivial to generate a multi-period tree with a given distribution
of the last period, especially in the multi-variate case. On the other hand, there are several
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methods for generating a single-period trees with a specified distribution, see for example
[23, 1, 13, 14, 10, 15, 8]. We use a moment-matching method from [10], which gives us control
over the first four moments and the correlations of the random variables. Once we have the
tree for the risk-neutral distribution, the price of the option is simply the expected value of
the distribution, i.e. weighted sum of the prices in the tree.

2.1 Example

The following example comes from [20]: We consider two different one-month options, both
based on S&P 500 and DAX 30 indices. The risk-neutral distribution of the returns (defined
as rt = Vt/Vt−1 − 1) was estimated, using data from December 1999. The properties of the
distribution are in Table 1.

Table 1: Properties of the risk-neutral distribution of returns from [20]

S&P 500 DAX 30
mean (annualised) 7.30% 4.28%
standard deviation (annualised) 22.34% 29.82%
skewness -0.58 -0.36
kurtosis 3.80 3.38
correlation 0.5192

The two options considered are an underperformance option, which gives the buyer a right
to buy the worse of the two indices, and an outperformance option that gives a right to buy
the better of the two indices. In both cases, the strike price is equal to the spot price, and
we buy indices for $100.

We use a moment-matching scenario generation method from [10] to generate the trees. To
achieve reasonable stability, we have used trees with 10.000 scenarios—it still takes less than
a second to both generate the tree and price the options. Using 10 runs, we have estimated
the price of the underperformance option as $1.72± $.025, and the outperformance option as
$4.74± $.025.

In [20], the prices are $1.52 and $4.86, respectively, making our prices 13% and 2% dif-
ferent. The difference comes from differences in the bi-variate distributions: we control only
the correlation coefficient, which is not enough to get the same structure of the bi-variate
distribution as in [20]. It is also confirmed by the fact that the error is much bigger for the
underperformance option, which is more sensitive to the bi-variate dependency structure –
see [20] for a detailed discussion.

The difference between our prices and the prices from [20] show that the correlation alone
is not enough to describe the bi-variate dependency structure. Hence, when we need a more
accurate estimation of the price of an multi-variate option, we have to use another method.
One possibility is using a copula, provided we have enough data/information to estimate it.
See [17, 4] for an introduction to copulas, or [18, 19, 20, 3] for copula-based option-pricing
techniques.
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3 Generating/pricing algorithm for a multi-period tree

In this section we describe the algorithm for generating a multi-period tree and pricing an
option based on this tree. We take the distributions for given—the problem of finding the
right distributions is discussed in the next section.

When describing a multi-period tree, we use the following conventions: We call the points
in time represented by nodes stages, and the time intervals between them periods. Hence, a
tree with p periods have p+1 stages. The root of the tree is indexed as stage zero, so period t
is an interval between stages t − 1 and t. A distribution of random variables with outcomes
at stage t can thus be referred to as a distribution in period t, or as a distribution at stage t.

In a multi-period tree we have to distinguish between conditional and unconditional distri-
butions. For example, with using the tree in Figure 1, nodes {3, 4, 5} represent a distribution
of the second period (or a distribution at stage 2), conditional on the values at node 1. The
conditional probabilities of node {3, 4, 5} sum up to one. On the other hand, the unconditional
distribution of the second period is represented by nodes {3, 4, 5, 15, 16, 17}. Specifically, the
unconditional distribution of the last period of a tree is referred to as the final-stage distri-
bution.

In addition, by generating a subtree of node n we understand generating a one-period tree
rooted at node n, i.e. finding the outcomes at the direct successors (children) of node n, and
the probabilities thereof. For example, generating a subtree of node 1 from Figure 1 means
finding the values of the random variables at nodes 3, 4 and 5, as well as the probabilities of
these nodes.

9 10 11 12 13 14 18 19 20 21 22 23 24 25 26

0

1 2

3 4 5 15 16 17

6 7 8

Figure 1: Example of a multi-period tree

The multi-period tree is constructed by one-period subtrees, starting in the root. The
subtrees are generated using a moment-matching approach from [9], so every subtree is con-
structed to have specified first four moments (mean, variance, skewness, kurtosis) and cor-
relations. Generating the multi-period tree by subtrees allows us to specify an inter-period
dependency: we create a subtree, move to one of the nodes, update the distribution of the
consecutive subtree (based on the original distribution and the outcomes at the node and its
predecessors), and generate the subtree with the updated distribution. See Appendix B for
an example of the update formulas, in the case of first order autocorrelation.

There is an important difference between generating a scenario tree for an optimization
model and generating a tree for the option pricing: while for the optimization model we need
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to store the whole tree prior to the optimization, the option pricing can be done simultaneously
with the tree-generation. In the following text we explain the pricing procedure and show
that it decreases the storage requirements enormously.

The important property is that the price at every node depends only on the outcomes at
the node and the prices of its direct successors (children). Hence, once we have computed the
price at a given node, we can discard all its successors. When we use a post-order traversal
of the tree, we need to store at most one path from the root to the leafs. The number of trees
stored at any moment is thus at most equal to the number of periods p.

As an example, consider generating/pricing the tree from Figure 1. Table 2 describes the
procedure step-by-step, showing for every step nodes that are generated, nodes in which we
calculate the price, and nodes that can be discarded. Figure 2 represents the same procedure
graphically.

Table 2: Step-by-step generation and pricing of the tree from Figure 1

new values at nodes dropped nodes nodes stored after the step
step outcomes prices outcomes & prices outcomes prices
1 1–2 0,1–2
2 3–5 0,1–2,3–5
3 6–8 6–8,3 6–8 0,1–2,3–5 3
4 9–11 9–11,4 9–11 0,1–2,3–5 3–4
5 12–14 12–14,5,1 12–14,3–5 0,1–2 1
6 15–17 0,1–2,15–17 1
7 18–20 18–20,15 18–20 0,1–2,15–17 1,15
8 21–23 21–23,16 21–23 0,1–2,15–17 1,15–16
9 24–26 24–26,17,2,0 24–26,15–17,1–2 0 0

A complete generating/pricing algorithm is presented in Figure 3. Note that the algorithm
is written in a recursive form only for the sake of simplicity: since recursive algorithms are
usually slower than their non-recursive versions, the actual implementation is not recursive
(and therefore significantly more complicated than the presented version). The formulation
also assumes that all the structures (outcomes and prices) are local to the function value(n),
and are therefore disposed of automatically by the system at the moment of the departure
from the function.

3.1 Pre-generation of subtrees

Since the size of the multi-period tree grows exponentially with the number of periods p,
the efficiency of the whole procedure becomes crucial. The most time-consuming task of the
algorithm presented in Figure 3 is the generation of subtrees, because the rest consists of
simple algebraic operations. In some cases we can, however, avoid generating all the subtrees,
speeding thus the procedure substantially.

The easiest case is when all the subtrees have the same number of branches and the same
distributions, i.e. the case with no inter-period dependency. In this case a single subtree can
be used throughout the whole multi-period tree. This subtree can be generated prior (or
at the start of) the generating/pricing algorithm, so there would be no scenario generation
during the rest of the algorithm.
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Figure 2: Example of step-by-step generation of a multi-period tree. The bold arcs represent the
currently generated subtree, the other subtrees kept in the memory have solid arcs. Dashed arcs
represents part of the multi-period tree that is not being processed at the moment.

If we want the number of branches of the subtrees to differ for every period (typically
starting with more branches and decrease the number for later periods), we still only need
one subtree for every desired size, as long as the distributions are kept constant, i.e. as long
as we do not have inter-period dependencies.

When we introduce inter-period dependencies (for example mean-reversion or autocorre-
lation), the situation becomes more complicated. However, we may still avoid “on the fly”
generation of the subtrees in the case when the dependency rules change only the means and
variances of the distributions: for example mean-reversion or volatility clumping. In this case
we can use a linear transformation to update the distribution: if we have a pre-generated
subtree X̃ with zero means and variances of one, then σX̃ + µ gives a subtree with mean
µ and variance σ2, while the higher moments and the correlations remain unchanged. The
linear transformation is much cheaper than generating a new tree, and the total running time
will be of the same magnitude as the case without inter-period dependencies.

The most difficult case is when we introduce inter-period rules that update also the higher
moments and/or the correlations of the subtree distribution. If we want to avoid generating
all the subtrees even in this case, we have to use an approximate approach: we pre-generate a
set of subtrees with different combinations of the properties that are updated, and during the
generating/pricing procedure choose the one closest to the desired properties. For example,
discretizing the interval of possible values of the correlation, the skewness, and the kurtosis
to 10 points each gives 10× 10× 10 = 1000 subtrees. These have to be generated in advance.
Since a typical multi-period tree will have millions of subtrees, the speed-up of the whole
generating/pricing process is substantial.
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function value(n) {
if n is not a leaf {

generate subtree of n = {x(m), p(m) |m ∈ C(n)};
for all children m ∈ C(n) do

v(m) = value(m);
value = max

{
fe

(
x(n)

)
,
∑

m∈C v(m)p(m)
}
;

}
else

value = fe

(
x(n)

)
;

}

Figure 3: The generating/pricing algorithm, using a recursive post-order traversal. For any node n
of the tree, C(n) is a set of all children of n, x(n) are prices of the assets at n, p(n) is a probability
of the node n, and fe(x(n)) is the profit of immediate exercise of the option at node n. The price of
the option is then found as price = value(root).

3.2 Speed test

The tests were run on an Intel Pentium III machine with 996.76 MHz processor and
256 MB RAM, running Windows 2000TM. The algorithm was implemented using the C pro-
gramming language and compiled with GNU C++ compiler.1

In the tests, we created 12-period trees and priced the two options from Section 2.1 on
them. Each option was priced both as an European and an American call. In these tests we
assume that all the subtrees have the same distributions and sizes, so we need to generate
only one subtree and use it throughout the whole tree. The time for generating is not included
in the reported time, but it typically is only a fraction of a second. The results are presented
in Table 3.

Table 3: Time to generate a 12-period tree and price two options on the tree

# branches
per subtree

subtrees terminal nodes time

5 61.035.156 244.110.625 32 sec
6 435.356.467 2.176.782.336 5 min

In these tests, we have used the same definition of returns as in Section 2.1: rt = Vt/Vt−1 − 1,
so Vt = (1+rt)Vt−1. If we use an alternative definitions rt = ln(Vt)−ln(Vt−1) and Vt = ertVt−1,
the code runs about three times slower, because the ln() and exp() functions take more CPU
time than division and multiplication.

4 Controlling the final-stage distribution

There are (at least) two possible approaches in generating multi-period scenario trees: we
may be concerned with the distributions of the one-period subtrees and with the inter-period
dependencies, or we may focus on the final-stage distribution. Since we are applying the
scenario trees for option pricing, we take the latter approach—having a correct final-stage

1 The code was also compiled with Visual C++, in which case it runs about 5% slower.

7



distribution is crucial for comparing with other models, where the final-stage distribution is
often the only specified property.

Like in the previous section, we describe the final-stage distribution by its moments and
correlations, and control the subtrees by the same means. Hence, the problem is to find the
right moments for the one-period subtrees, given the final-stage distribution, the number of
periods and possibly the inter-period dependency rules and the outcomes of the predecessors
of the subtree.

First, we focus on the case with no inter-period dependency, i.e. the case where the
distribution of a subtree of a given node does not depend on the outcomes at the predecessors
of this node. This corresponds to the “traditional” binary trees that have independent periods
as well. In this case, we provide formulas to find moments and correlations of the subtrees
that result in the final-stage distribution with given properties.

The assumption of independent periods is, unfortunately, not very realistic for financial
applications, where effects like autocorrelation and mean-reversion are commonplace. In the
second part of this section we thus look at trees with inter-period dependencies. In this
case, however, we did not manage to find corresponding formulas for controlling the subtree
distributions. Instead, we present a procedure that generates a tree and thereafter corrects
the means and variances to obtain the required unconditional distribution (distribution over
all nodes in the same stage). Used in a loop, the procedure corrects the means and variances
in the whole tree.

4.1 Independent periods

In this section we present formulas for the moments and the correlations of distribution of the
subtrees that will results in a multi-period tree with the correct moments and correlations
at the final stage. The formulas use an assumption that all the subtrees have the same
distributions, i.e. that there is no iter-period dependency. A detailed derivation of the formulas
is in Appendix A.

Throughout the section we use the following notation: in a multi-period tree with p periods
we denote by µ, σ2, γ, δ the first four moments2 of the final-stage distribution, and µp, σ

2
p, γp, δp

the first four moments of the corresponding subtrees.3 For two random variables X̃ and Ỹ ,
we extend the notation by ρ for their final-stage correlation, and ρp for the correlation in the
subtrees. In addition, we add upper indices X and Y to the moments defined above, in order
to distinguished between moments of X̃ and Ỹ where needed.

The formulas depend on the nature of the underlying stochastic process: It may be either
discrete, updating values only at the stages of the tree, or it may be a process with continuous
compound.

Formulas for discrete processes

By a discrete process we understand a process {Ṽ t} evolving as

Ṽt = (1 + X̃t)Ṽt−1.

2 The standard notation is γ1 for skewness and γ2 for normalised kurtosis. Since we need indices for the
moments, we have introduced a new notation γ = γ1 and δ = γ2 + 3.

3 The index p thus means that these properties are implied by their respective final-stage values, and the
number of periods p.
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The final-stage return at the tree is then given as

p∏
k=1

(1 + X̃k)− 1.

Then, to get a tree with µ, σ2, γ, δ, and ρ, we have to use subtrees with:

µp = (1 + µ)1/p − 1 (1a)

σ2
p =

(
(1 + µ)2 + σ2

)1/p − (1 + µp)
2 (1b)

γp =
1
σ3

p

[(
(1 + µ)3 + 3(1 + µ)σ2 + σ3γ

)1/p − (1 + µp)3 − 3(1 + µp)σ2
p

]
(1c)

δp =
1
σ4

p

[(
(1 + µ)4 + 6(1 + µ)2σ2 + 4(1 + µ)σ3γ + σ4δ

)1/p

−(1 + µp)4 − 6(1 + µp)2σ2
p − 4(1 + µp)σ3

pγp

] (1d)

ρp =
1

σX
p σY

p

[(
(1 + µX)(1 + µY ) + σXσY ρ

)1/p − (1 + µX
p )(1 + µY

p )
]

(1e)

This, for example, means that in order to get the standard normal distribution in the final
stage of a p-periodic tree (µ = 0, σ2 = 1, γ = 0, δ = 3), the moments of the subtrees have
to be

γp =
21/p − 2√
21/p − 1

−−−→
p→∞

−∞

δp =
1
σ4

p

(
101/p − 4 · 41/p + 6 · 21/p − 3

)
−−−→
p→∞

∞.

(2)

If we use subtrees with the correct mean and variance, but keep them normal (i.e. γ = 0
and δ = 3), the resulting p-periodic tree would have skewness and kurtosis:

γ =
(
3 · 21/p − 2

)p
− 4 −−−→

p→∞
4

δ =
(
3 · 41/p − 2

)p
− 4

(
3 · 21/p − 2

)p
+ 9 −−−→

p→∞
41

(3)

Note also that zero correlation in the subtrees leads to a zero correlation in the final-stage
distribution. Generally, the correlation is very stable, i.e. the difference between ρ and ρp is
typically small.

Formulas for continuous processes

By a continuous process we understand a process {Ṽ t} evolving as

Ṽt = eX̃t Ṽt−1.

The final-stage return is then given as

ln

(
Ṽp

V0

)
= ln(Ṽp)− ln(V0) = ln

(
e
∑p

k=1 X̃kV0

)
− ln(V0) =

p∑
k=1

X̃k.
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Then, to get a tree with µ, σ2, γ, δ, and ρ, we have to use subtrees with:

µp = p−1µ γp =
√

p γ (4a)

σ2
p = p−1σ2 δp = p(δ − 3) + 3 (4b)

ρp = ρ (4c)

Unlike the discrete case, here we know that a sum of independent normal distributions
is again normally distributed, so (γp, δp) = (0, 3) implies (γ, δ) = (0, 3), and vice versa. In
addition, for any fixed γp and δp, we know that the final-stage distribution converges to the
normal distribution as p goes to infinity, hence γ −−−→

p→∞
0 and δ −−−→

p→∞
3.

Example

As an example, consider the distributions presented in Section 2.1. Properties of subtrees
resulting in multi-period trees with this bi-variate distribution are presented in Table 4. We
see that there is a substantial difference in behaviour of the discrete and the continuous trees:
in the discrete case, the subtrees are much more non-normal. As a result, the minimum
number of branches of the subtrees, needed to obtain the desired properties, is usually higher
in the discrete case, since more extreme distributions typically need more scenarios.

Table 4: Moments of subtrees to get a given final-stage distribution

# periods 1 2 4 6 8 10 12

di
sc

re
te

pr
oc

es
se

s

mean 0.0061 0.0030 0.0015 0.0010 0.0008 0.0006 0.0005
std.dev. 0.0645 0.0454 0.0321 0.0262 0.0227 0.0203 0.0185

skew -0.580 -0.952 -1.438 -1.800 -2.100 -2.362 -2.598
kurt 3.800 5.061 7.627 10.203 12.781 15.361 17.940

mean 0.0036 0.0018 0.0009 0.0006 0.0004 0.0004 0.0003
std.dev. 0.0861 0.0607 0.0429 0.0350 0.0303 0.0271 0.0247

skew -0.360 -0.685 -1.092 -1.388 -1.632 -1.844 -2.035
kurt 3.380 4.183 5.867 7.568 9.273 10.980 12.688
corr 0.5192 0.5196 0.5198 0.5198 0.5199 0.5199 0.5199

co
nt

in
uo

us
pr

oc
es

se
s mean 0.0061 0.0030 0.0015 0.0010 0.0008 0.0006 0.0005

std.dev. 0.0645 0.0456 0.0322 0.0263 0.0228 0.0204 0.0186
skew -0.580 -0.820 -1.160 -1.421 -1.640 -1.834 -2.009
kurt 3.800 4.600 6.200 7.800 9.400 11.000 12.600

mean 0.0036 0.0018 0.0009 0.0006 0.0004 0.0004 0.0003
std.dev. 0.0861 0.0609 0.0430 0.0351 0.0304 0.0272 0.0248

skew -0.360 -0.509 -0.720 -0.882 -1.018 -1.138 -1.247
kurt 3.380 3.760 4.520 5.280 6.040 6.800 7.560
corr 0.5192 0.5192 0.5192 0.5192 0.5192 0.5192 0.5192

4.2 Dependent periods

In many cases, the assumption of independent periods is too restrictive. Also in finance,
effects like mean-reversion or autocorrelation are very common. There are many models of

10



inter-period dependency, see for example [16, 23, 2].
Instead on focusing on modelling of a special type of dependency, we discuss what can be

done in the case when we need a scenario tree with dependent periods, but also with some
degree of control over the unconditional distributions (distributions over all nodes in the same
stage). As an example, Appendix B presents a way to implement first order autocorrelation,
in a way that allows, at the same time, to control the unconditional means and variances.

In the case of a general inter-period dependency, we did not manage to repeat the results
from the previous section, and produce formulas for controlling the final-stage distribution.
The best we can do is to control the unconditional means and variances by a procedure that
first generates the tree, and then corrects the unconditional distribution. This procedure is
independent of the type of the inter-period dependency used.

If we stored the whole tree, we could correct the means and variances in all the periods at
once. However, when we use the constructing/pricing algorithm (Fig. 3), we do not store the
tree,4 so we have to proceed stepwise, correcting one period at a time. As a result, we have to
know the (unconditional) means and variances at every stage in order to do the corrections. If
we know the unconditional means and variances only at the final stage, we have to interpolate
the values for the rest of the stages.

Correcting means and variances for one period

Here we show how to correct the unconditional means and variances for a given period t, i.e.
the period between stages t−1 and t. We want to change the update rules for the distribution
at period t, so that the unconditional distribution of period t will have desired means µt and
variances σ2

t .
First, we have to compute the current properties µ̄t and σ̄2

t , so we have to generate a tree
with at least t periods.5 Once we know µ̄t and σ̄2

t , we can update the generating/pricing
algorithm from Figure 3: after the generation of the subtree {x(m), p(m) |m ∈ C(n)}, we
add the lines

if n is in stage t− 1

x(m)← x(m)− µ̄t

σ̄t
σt + µt =

σt

σ̄t
x(m) + µt −

σt

σ̄t
µ̄t for all m ∈ C(n).

Instead of transforming the outcomes x(m), it is more efficient to transform the means
and variances before generating the subtree: if the means and variances for a subtree of node
n are E

[
X̃

n
t

]
and Var

[
X̃

n
t

]
, we change them to:

E
[
X̃

n
t

]
← σt

σ̄t
E
[
X̃

n
t

]
+ µt −

σt

σ̄t
µ̄t (5a)

Var
[
X̃

n
t

]
← σt

σ̄t
Var
[
X̃

n
t

]
(5b)

4 The fact that the algorithm does not need to store the whole tree is its main advantage, since it allows
for processing of very large trees.

5 Even if we do not store the tree, it is easy to compute the unconditional moments: During the execution
of the algorithm, we accumulate the values of the non-central moments E

[
X̃k

]
. After the run, these are

transformed to the central moments E
[(

X̃ − E
[
X̃

])k]
, using the formulas from Appendix A.1.
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Controlling unconditional means and variances at every period

To control the means and variances of the whole tree we apply the formulas from the previous
section iteratively:

for t in 2 to p {
generate tree with t periods, using corrections already found for t′ < t
compute the unconditional means and variances in period t
compute the corrections of means and variances in period t
}
generate tree with p periods, using corrections for all t′ ∈ {2 . . . p}.

Note that we have to generate p − 1 trees (growing in size from 2 to p periods), before
we can generate the whole p-period tree with the right properties. Since the size of the trees
grows exponentially with the number of periods, the whole procedure can be expected to take
2–3 times the time needed for generation of one p-period tree.

5 Stability issues

In sections 3 and 4.1 we explained that, in the case of independent periods with equal dis-
tributions, it is possible to generate only one subtree and reuse it throughout the whole
multi-period tree.

While this resembles the “classical” binomial trees, there is an important difference: in a
binomial tree the subtree is unique, in our trees there are infinitely many trees with the given
properties (assuming that the subtrees have enough branches). Since we randomly pick only
one, we have to test how much it influences the resulting option prices.

We tested prices of the two options defined in Section 2.1, both priced as American-style6

options. To be able to test also the influence of the size of the subtrees, the test was done
for 6-period trees. The size of the subtrees varied from 5 to 40. For every size, we generated
25 trees, priced the options on them, and computed the means and variances of the prices.
Results are reported in Table 5.

Table 5: Stability of option prices with respect to the size of the subtrees

# branches 5 10 15 18 20 40

underperf.
mean 1.76 1.84 1.89 1.93 1.83 1.77

std. dev. 0.41 0.23 0.20 0.18 0.16 0.16

outperf.
mean 4.63 4.60 4.56 4.54 4.65 4.70

std. dev. 0.45 0.22 0.21 0.19 0.16 0.17

We see that the prices are not stable, i.e. they depend on the choice of the constituting
subtree. The question is, where does this instability come form? Since all the subtrees are

6 Both options are call options. For the common one-asset call options, the price of an American call is
equal to the price of an European call. In our case it turns out that the outperformance call is also never
exercised before the final stage. For the underperformance call, the American call has higher price than the
European, yet the difference is only about 3%.
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constructed in such a way that the unconditional final-stage distributions have the right first
four moments and correlations, the variance must come from some other properties.

One possible source is the variance of the higher moments of the marginals, which we
do not control. However, our previous experience shows that the first four moments give so
much stability that the variance from higher moments can not explain the observed variance
of prices. To test it, we have used the same trees to price common one-asset options, and in
this case the prices were stable.

Since we price American options, another possible source of the observed variance is an
instability of the paths. However, when we price the options as European, the variance of the
prices does not decrease – one of the reasons is the fact that the difference between the prices
of American and European options is very small.6

Hence, the variance of the prices must come from differences in the structure of the multi-
variate dependency. As we did in Section 2.1, we again see that the correlation matrix is
not enough to describe the dependency. We may also document this graphically: Figure 4
shows density maps of two distributions with the same four moments and correlations – they
correspond to trees with 40 branches per subtree, taking the cases with the highest and the
lowest price for the underperformance option.

The highest price The lowest price

-0.4 -0.2  0  0.2  0.4

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2  0  0.2  0.4

-0.4

-0.2

 0

 0.2

 0.4

Figure 4: Two distributions with equal first four moments and correlations

This means that if we know only the moments and correlations of the return distribution,
the prices of multi-variate options are not uniquely determined. Hence, the interval of prices
from multiple runs can be interpreted as an interval of possible option prices, given this limited
information. If we, on the other hand, know more about the multi-variate distribution, other
approaches than the moment-matching presented in this paper should be appropriate. This
is left for a future research.

There is, however, an easy way to reduce the variance of the option prices: instead of
re-using the same one-period subtree throughout the whole multi-period tree, we may pre-
generate many subtrees with the same properties, and sample from them during the gener-
ating/pricing algorithm (Fig. 3). The problem with this procedure is that we do not know
anything about the distribution of the subtrees, so there is no guarantee that the sampling
will be unbiased.
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the problem.

Conclusions

In this paper, we have presented a method to price multi-variate options. The method is
based on non-recombining trees, which are created by a moment-matching approach. We
have shown that even with the exponential growth of the size of the trees, it is possible to
price options on 12-period trees in approximately half a minute. In addition, we have shown
how to price European options using one-period trees.

For multi-period trees without inter-period dependency of the return distributions, we
have shown formulas for moments and correlations of the constituting one-period subtrees,
resulting in a desired final-stage distribution. In the case with inter-period dependency, we
could not replicate the result and present only an ex-post procedure for correcting means and
variances of the unconditional distributions.

We have also shown that the moment-based approach, with correlations as the only de-
scription of the multi-variate dependency, has its limits: if we have several distribution of
prices with the same moments and correlations, the price of some multi-variate options may
vary significantly, because these options can be very sensitive to the multi-variate structure of
the distribution. Hence, better methods for description of the multi-variate structure should
be used, if we have enough data/information. This is left for a future research.
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A Moments of trees with independent stages

In this section we develop the formulas for the moments of the final-stage distribution as
functions of the moments of the one-period subtrees, as well as the inverse formulas. In the
formulas we assume that all the one-period subtrees have the same distributions and that the
periods are independent. (A typical example is repeating the same subtree over the whole
multi-period tree.)

In a multi-period tree with p periods we denote µ, σ2, γ, δ the first four moments of the
final-stage distribution, and µp, σ

2
p, γp, δp the first four moments of the corresponding subtrees.

A.1 General equalities

µ = E
[
X̃
]

σ2 = Var
[
X̃
]

= E
[
(X̃ − E

[
X̃
]
)2
]

= E
[
X̃2
]
− E

[
X̃
]2

σ3γ = σ3 skew
[
X̃
]

= E
[
(X̃ − E

[
X̃
]
)3
]

= E
[
X̃3
]
− 3 E

[
X̃
]

E
[
X̃2
]

+ 2 E
[
X̃
]3

σ4δ = σ4 kurt
[
X̃
]

= E
[
(X̃ − E

[
X̃
]
)4
]

= E
[
X̃4
]
− 4 E

[
X̃
]

E
[
X̃3
]

+ 6 E
[
X̃
]2

E
[
X̃2
]
− 3 E

[
X̃
]4

and the inverse relations:

E
[
X̃2
]

= Var
[
X̃
]

+ E
[
X̃
]2

= σ2 + µ2

E
[
X̃3
]

= σ3skew
[
X̃
]

+ 3 E
[
X̃
]

E
[
X̃2
]
− 2 E

[
X̃
]3

= σ3γ + 3µ(σ2 + µ2)− 2µ3

= σ3γ + 3µσ2 + µ3

E
[
X̃4
]

= σ4kurt
[
X̃
]

+ 4 E
[
X̃
]

E
[
X̃3
]
− 6 E

[
X̃
]2

E
[
X̃2
]

+ 3 E
[
X̃
]4

= σ4δ + 4µ
(
σ3γ + 3µσ2 + µ3

)
− 6µ2

(
σ2 + µ2

)
+ 3µ4

= σ4δ + 4µσ3γ + 6µ2σ2 + µ4

A.2 Formulas for discrete processes

In this section we present formulas for processes where the value is changed only at the stages
of the tree, so the process Vt evolves as

Ṽt = (1 + X̃t)Ṽt−1.

The final-stage return is then given as

p∏
k=1

(1 + X̃k)− 1.
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For computing the moments of the distribution of final-stage returns, the following equal-
ities are useful. Note that we use the independence assumption here.

E

[
p∏

k=1

(1 + X̃k)

]
=

p∏
k=1

E
[
1 + X̃k

]
=

p∏
k=1

(
1 + E

[
X̃k

])
=

p∏
k=1

(1 + µp)

= (1 + µp)
p

E

[
p∏

k=1

(1 + X̃k)2
]

=
p∏

k=1

E
[
(1 + X̃k)2

]
=

p∏
k=1

E
[
1 + 2X̃k + X̃2

k

]
=

p∏
k=1

(
1 + 2µp + σ2

p + µ2
p

)
=
(
1 + 2µp + σ2

p + µ2
p

)p
=
(
(1 + µp)2 + σ2

p

)p
E

[
p∏

k=1

(1 + X̃k)3
]

=
p∏

k=1

E
[
(1 + X̃k)3

]
=

p∏
k=1

E
[
1 + 3X̃k + 3X̃2

k + X̃3
k

]
=

p∏
k=1

(
1 + 3µp + 3(σ2

p + µ2
p) + (σ3

pγp + 3µpσ
2
p + µ3

p)
)

=
(
1 + 3µp + 3µ2

p + µ3
p + 3σ2

p + 3µpσ
2
p + σ3

pγp

)p
=
(
(1 + µp)3 + 3(1 + µp)σ2

p + σ3
pγp

)p
E

[
p∏

k=1

(1 + X̃k)4
]

=
p∏

k=1

E
[
(1 + X̃k)4

]
=

p∏
k=1

E
[
1 + 4X̃k + 6X̃2

k + 4X̃3
k + X̃4

k

]
=

p∏
k=1

(
1 + 4µp + 6(σ2

p + µ2
p) + 4(σ3

pγp + 3µpσ
2
p + µ3

p)

+ (σ4
pδp + 4µpσ

3
pγp + 6µ2

pσ
2
p + µ4

p)
)

=
(
1 + 4µp + 6µ2

p + 4µ3
p + µ4

p + 6σ2
p(1 + 2µp + µ2

p)

+ 4σ3
pγp(1 + µp) + σ4

pδp

)p
=
(
(1 + µp)4 + 6(1 + µp)2σ2

p + 4(1 + µp)σ3
pγp + σ4

pδp

)p
The formulas for moments

µ = E

[
p∏

k=1

(1 + X̃k)− 1

]
=

p∏
k=1

E
[
(1 + X̃k)

]
− 1 = (1 + µp)p − 1

µp = (1 + µ)1/p − 1 (6)
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σ2 = Var

[
p∏

k=1

(1 + X̃k)− 1

]
= Var

[
p∏

k=1

(1 + X̃k)

]

= E

( p∏
k=1

(1 + X̃k)

)2
−(E

[
p∏

k=1

(1 + X̃k)

])2

=
(
(1 + µp)2 + σ2

p

)p − ((1 + µp)p
)2 =

(
(1 + µp)2 + σ2

p

)p − (1 + µ)2

σ2
p =

(
(1 + µ)2 + σ2

)1/p − (1 + µp)
2 (7)

σ3γ = skew

[
p∏

k=1

(1 + X̃k)− 1

]
= skew

[
p∏

k=1

(1 + X̃k)

]

= E

( p∏
k=1

(1 + X̃k)

)3
− 3 E

[
p∏

k=1

(1 + X̃k)

]
E

( p∏
k=1

(1 + X̃k)

)2


+ 2

(
E

[
p∏

k=1

(1 + X̃k)

])3

=
(
(1 + µp)3 + 3(1 + µp)σ2

p + σ3
pγp

)p − 3(1 + µ)
(
(1 + µp)2 + σ2

p

)p + 2(1 + µ)3

=
(
(1 + µp)3 + 3(1 + µp)σ2

p + σ3
pγp

)p − (1 + µ)
[
3
(
(1 + µp)2 + σ2

p

)p − 2(1 + µ)2
]

=
(
(1 + µp)3 + 3(1 + µp)σ2

p + σ2
pγp

)p − (1 + µ)
(
3σ2 + (1 + µ)2

)
=
(
(1 + µp)3 + 3(1 + µp)σ2

p + σ3
pγp

)p − (1 + µ)3 − 3(1 + µ)σ2

γp =
1
σ3

p

[(
(1 + µ)3 + 3(1 + µ)σ2 + σ3γ

)1/p − (1 + µp)3 − 3(1 + µp)σ2
p

]
(8)
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σ4δ = kurt

[
p∏

k=1

(1 + X̃k)− 1

]
= kurt

[
p∏

k=1

(1 + X̃k)

]

= E

( p∏
k=1

(1 + X̃k)

)4
− 4 E

[
p∏

k=1

(1 + X̃k)

]
E

( p∏
k=1

(1 + X̃k)

)3


+ 6

(
E

[
p∏

k=1

(1 + X̃k)

])2

E

( p∏
k=1

(1 + X̃k)

)2
− 3

(
E

[
p∏

k=1

(1 + X̃k)

])4

=
(
(1 + µp)4 + 6(1 + µp)2σ2

p + 4(1 + µp)σ3
pγp + σ4

pδp

)p
− 4(1 + µ)

(
(1 + µp)3 + 3(1 + µp)σ2

p + σ3
pγp

)p
+ 6(1 + µ)2

(
(1 + µp)2 + σ2

p

)p − 3(1 + µ)4

=
(
(1 + µp)4 + 6(1 + µp)2σ2

p + 4(1 + µp)σ3
pγp + σ4

pδp

)p
(1 + µ)

[
−4
(
σ3γ + 3(1 + µ)σ2 + (1 + µ)3

)
+ 6(1 + µ)

(
σ2 + (1 + µ)2

)
− 3(1 + µ)3

]
=
(
(1 + µp)4 + 6(1 + µp)2σ2

p + 4(1 + µp)σ3
pγp + σ4

pδp

)p
− (1 + µ)4 − 6(1 + µ)2σ2 − 4(1 + µ)σ3γ

δp =
1
σ4

p

[(
(1 + µ)4 + 6(1 + µ)2σ2 + 4(1 + µ)σ3γ + σ4δ

)1/p

−(1 + µp)4 − 6(1 + µp)2σ2
p − 4(1 + µp)σ3

pγp

] (9)

The formulas for correlations

Finally, for two random variables X̃ and Ỹ , we can also measure the correlation ρ. For this
formulas, we add upper indices X and Y to the notation for mean and variance.

σXσY ρ = Cov

[
p∏

k=1

(
1 + X̃k

)
− 1,

p∏
k=1

(
1 + Ỹk

)
− 1

]
= Cov

[
p∏

k=1

(
1 + X̃k

)
,

p∏
k=1

(
1 + Ỹk

)]

= E

[
p∏

k=1

(
1 + X̃k

) p∏
k=1

(
1 + Ỹk

)]
− E

[
p∏

k=1

(
1 + X̃k

)]
E

[
p∏

k=1

(
1 + Ỹk

)]

= E

[
p∏

k=1

(
1 + X̃k

)(
1 + Ỹk

)]
− (1 + µX)(1 + µY )

=
p∏

k=1

E
[(

1 + X̃k

)(
1 + Ỹk

)]
− (1 + µX)(1 + µY )

=
p∏

k=1

(
E
[(

1 + X̃k

)]
E
[(

1 + Ỹk

)]
+ Cov(X̃, Ỹ )

)
− (1 + µX)(1 + µY )

=
(
(1 + µX

p )(1 + µY
p ) + σX

p σY
p ρp

)p − (1 + µX)(1 + µY )

ρp =
1

σX
p σY

p

[(
σXσY ρ + (1 + µX)(1 + µY )

)1/p − (1 + µX
p )(1 + µY

p )
]

(10)
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A.3 Formulas for continuous processes

In this section we present formulas for continuous processes, i.e. processes whose values Vt

are compounded at continuous rate

Vt = eX̃tVt−1.

The final-stage return is then defined as

X̃ = ln
(

Vp

V0

)
= ln(Vp)− ln(V0) = ln

(
e
∑p

k=1 X̃kV0

)
− ln(V0) =

p∑
k=1

X̃k.

Using the formulas from Section A.1, we get the following relations between the subtree
properties and the final-stage properties:

µ = E

[
p∑

k=1

(X̃k)

]
=

p∑
k=1

E
[
X̃k)

]
= p µp

µp = p−1µ (11)

E
[
X̃2
]

= E

[( p∑
k=1

X̃k

)2
]

= E

[
p∑

k=1

p∑
l=1

X̃kX̃l

]
=

p∑
k=1

p∑
l=1

E
[
X̃kX̃l

]

=
p∑

k=1

E
[
X̃k

]∑
l 6=k

E
[
X̃l

]
+ E

[
X̃2

k

]
=

p∑
k=1

(
E
[
X̃k

]( p∑
l=1

E
[
X̃l

]
− E

[
X̃k

])
+ E

[
X̃2

k

])

=
p∑

k=1

(
µE
[
X̃k

]
+ E

[
X̃2

k

]
−
(
E
[
X̃k

])2
)

= µ2 +
p∑

k=1

σ2
k = µ2 + p σ2

p

σ2 = Var

[
p∑

k=1

(X̃k)

]
= E

[
X̃2
]
− E

[
X̃
]2

= µ2 + p σ2
p − µ2 = p σ2

p

σ2
p = p−1σ2

p (12)

E
[
X̃3
]

= E

[( p∑
k=1

X̃k

)3
]

= E

 p∑
k,l,m=1

X̃kX̃lX̃m

 =
p∑

k,l,m=1

E
[
X̃kX̃lX̃m

]

=
p∑

k=1

 ∑
l,m6=k

E
[
X̃k

]
E
[
X̃lX̃m

]
+ 2

∑
l 6=k

E
[
X̃2

kX̃l

]
+ E

[
X̃3

k

]
=

p∑
k=1

E
[
X̃k

] ∑
l,m6=k

E
[
X̃lX̃m

]
+ 2

p∑
k=1

E
[
X̃2

k

]∑
l 6=k

E
[
X̃l

]
+

p∑
k=1

E
[
X̃3

k

]
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∑
l,m6=k

E
[
X̃lX̃m

]
=
∑
l 6=k

(
p∑

m=1

E
[
X̃lX̃m

]
− E

[
X̃lX̃k

])

=
p∑

l=1

(
p∑

m=1

E
[
X̃lX̃m

]
− E

[
X̃lX̃k

])
−

(
p∑

m=1

E
[
X̃kX̃m

]
− E

[
X̃2

k

])

= µ + σ2 − 2
p∑

l=1

E
[
X̃lX̃k

]
+ E

[
X̃2

k

]
= µ + σ2 − 2

(
µE
[
X̃k

]
+ E

[
X̃2

k

]
−
(
E
[
X̃k

])2
)

+ E
[
X̃2

k

]
= µ + σ2 − 2µE

[
X̃k

]
− E

[
X̃2

k

]
+ 2

(
E
[
X̃k

])2

E
[
X̃3
]

=
p∑

k=1

E
[
X̃k

](
µ + σ2 − 2µE

[
X̃k

]
− E

[
X̃2

k

]
+ 2

(
E
[
X̃k

])2
)

+ 2
p∑

k=1

E
[
X̃2

k

] (
µ− E

[
X̃k

])
+

p∑
k=1

E
[
X̃3

k

]
= µ

(
µ + σ2

)
+ 2µσ2

+
p∑

k=1

(
−E

[
X̃k

]
E
[
X̃2

k

]
+ 2

(
E
[
X̃k

])3
− 2E

[
X̃2

k

]
E
[
X̃k

]
+ E

[
X̃3

k

])

= µ3 + 3µσ2 +
p∑

k=1

(
E
[
X̃3

k

]
− 3E

[
X̃k

]
E
[
X̃2

k

]
+ 2

(
E
[
X̃k

])3
)

σ3γ = E
[
X̃3
]
− µ3 − 3µσ2 =

p∑
k=1

σ3
kγk = p σ3

pγp

σp =
σ3

p σ3
p

γ =
p3/2σ3

p

p σ3
p

γ =
√

p γ (13)

Similar, but more complicated, calculations show that for kurtosis we have

δ − 3 = p−1 (δp − 3)

δp = p (δ − 3) + 3 (14)
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Finally, for correlations we get:

E
[
X̃Ỹ

]
= E

[( p∑
k=1

X̃k

)( p∑
l=1

Ỹl

)]
=

p∑
k,l=1

E
[
X̃kỸl

]

=
p∑

k=1

∑
l 6=k

E
[
X̃k

]
E
[
Ỹl

]
+ E

[
X̃kỸk

]
=

p∑
k=1

(
E
[
X̃k

]( p∑
l=1

E
[
Ỹl

]
− E

[
Ỹk

])
+ E

[
X̃kỸk

])

=
p∑

k=1

E
[
X̃k

] p∑
l=1

E
[
Ỹl

]
+

p∑
k=1

(
E
[
X̃kỸk

]
− E

[
X̃k

]
E
[
Ỹk

])
= E

[
X̃
]

E
[
Ỹ
]

+
p∑

k=1

Cov
[
X̃k, Ỹk

]
σXσY ρ = Cov

[
X̃, Ỹ

]
= E

[
X̃Ỹ

]
− E

[
X̃
]

E
[
Ỹ
]

=
p∑

k=1

Cov
[
X̃k, Ỹk

]
=

p∑
k=1

σX
k σY

k ρk = p σX
p σY

p ρp

ρp =
σXσY

p σX
p σY

p

ρ =
√

p σX
p
√

p σY
p

p σX
p σY

p

ρ = ρ (15)

B Example of dependency: first order autocorrelation

In this section we show how to add a first order autocorrelation to the scenario-tree generating
procedure, in such a way that we do not change the means and variances of the unconditional
distributions. We describe only the simplest case when the distribution of a marginal X̃t,i of
the random vector X̃t depends explicitly7 only on the previous value xt−1,i. For more general
information about modelling the autocorrelation, see for example [16, 23, 2]. For the rest of
the section, we drop the index i to simplify the formulas.

In the context of scenario trees, the first order correlation can be added during the gen-
eration of the tree, using the algorithm described in Section 3. Hence, we need formulas for
adding the autocorrelation to a subtree of a given node n at stage t of the tree. Since the
tree generation proceeds from the root to the leaves, we already know the outcome xt of the
random vector X̃t at node n. We also know the unconditional distribution of the successive
subtree, X̃t+1. We want to update the distribution in such a way that

corr
(
X̃t+1, X̃t

)
= ρ1.

To distinguish between the (unconditional) moments of X̃t and X̃t+1, we add a time index
to the symbols for moments µ and σ2.

7 We do not say that X̃t,i does not depend on {xτ,i, τ < t− 1}, we just do not control these dependencies.
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To introduce the correlation, we use the Cholesky decomposition of the correlation matrix

R =
[

1 ρ1

ρ1 1

]
=
[

1 0
ρ1

√
1− ρ2

1

]
.

[
1 ρ1

0
√

1− ρ2
1

]
= LLT .

Since X̃t+1 is independent of X̃t, we know that, with the random vector Ỹ = L
[
X̃t, X̃t+1

]T
,

we have
Ỹ1 = X̃t

Ỹ2 = ρ1X̃t +
√

1− ρ2
1X̃t+1

corr
(
Ỹ t+1, Ỹ t

)
= ρ1

(16)

We want Ỹ2 to become the updated (autocorrelated) version of the random variable X̃t+1,
so their unconditional distributions should be equal. We do not know how to guarantee
equal distributions, yet we can at least control the means and variances: The transformation
Ỹ = LX̃ does not change the means and variances, if X̃ has zero means and variances of
one. We can therefore first normalise X̃, then do the transformation Ỹ = LX̃, and finally
transform Ỹ to the moments µt+1, σ2

t+1. Since all of these are linear transformations, they
will not change the correlation ρ1. The formula then becomes

Ỹ2 =

(
ρ1

xt − µt

σt
+
√

1− ρ2
1

X̃t+1 − µt+1

σt+1

)
σt+1 + µt+1

= µt+1 + σt+1ρ1
xt − µt

σt
+
√

1− ρ2
1

(
X̃t+1 − µt+1

)
.

(17)

From this formula, we get the following properties:

conditional:


E
[
Ỹ2|X̃t = xt

]
= µt+1 + σt+1ρ1

xt − µt

σt

Var
[
Ỹ2|X̃t = xt

]
=
(
1− ρ2

1

)
σ2

t+1

(18)

unconditional:

 E
[
Ỹ2

]
= µt+1

Var
[
Ỹ2

]
= σ2

t+1

(19)

We see that the unconditional distribution of Ỹ2 has the same unconditional mean and
variance as the distribution of X̃t+1. Unfortunately, this is not case with the higher moments.
For example, even in the simple case skew

[
X̃t

]
= skew

[
X̃t+1

]
, we get

skew
[
Ỹ2

]
=
(

ρ3
1 +

(
1− ρ2

1

)3/2) skew [Xt] .

Note also that there are two equivalent ways of implementing the transformation: we may
either transform the vector of outcomes

{
xm

t+1 | m ∈ C(n)
}
, or we may transform its mean

and variance before we generate the outcomes.
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