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Abstract

This note describes a new development of the scenario-generation algorithm from
the paper “A Heuristic for Moment-matching Scenario Generation”, published in
Computational Optimization and Applications, vol. 24, pp. 169–185, 2003. The pre-
sented results lead to a better performance of the algorithm, so the note should be
of interest to anybody considering implementing the algorithm.

Throughout the note, we assume that the reader is familiar with the paper, so we
can use the notation and refer to parts of the algorithm.

Redundance of Step 4 of the algorithm

In the core (idealised) algorithm, presented in Section 2.4 of the paper, we start the gener-
ation with an independent random vector X̃ with moments TRSFMOM . These moments
are computed in such a way that Ỹ = L X̃ has moments MOM (which then lead to the
specified moments TARMOM). In the modified algorithm in Section 2.5, the outcomes
X of the random vector X̃ serve as a starting point for the iterative loop in Step 5 of the
algorithm.

Unfortunately, the moments TRSFMOM required for the random vector X̃ are often
quite extreme—they may not even exist. As a result, X̃ may be both hard to obtain and,
even worse, it may lead to “strange” (non-smooth and/or truncated) distributions.

On the other hand, our testing shows that the iterative procedure in Step 5 converges
even if we start with a random vector X̃ with moments different from TRSFMOM . In
particular, the algorithm works well if we start with marginals X̃i with standard normal
distributions. Our recommendation is thus to skip Step 4 of the algorithm (generation of
X̃ ) altogether, and sample the marginals X̃i from the standard normal distribution.
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Instead of sampling, it is also possible to use a pre-defined discretization of the distri-
bution. This variant then leads to an “almost deterministic” algorithm, i.e. it decreases the
differences between trees coming from several runs of the algorithm. (Whether the algo-
rithm becomes truly deterministic depends on the implementation of the solution method
used for finding coefficients of the cubic transformation. In our case, the solution method
contains some randomness, so the algorithm may give different trees even if we start with
the same discretizations of X̃i.)

The normal distribution is chosen mostly for convenience, since it is easy to sample
from. In addition, the normal distribution is smooth, which seems to be important for
stability of optimization models—see Kaut and Wallace, 2003 for a discussion of stability.
Even if other distributions have not been tested, we believe that any smooth distribution
would work as well.

Problems with low kurtosis

Unfortunately, not all distributions can be obtained by a single cubic transformation of
the standard normal distribution: When the kurtosis is too small, the difference between
the normal distribution and the target distribution becomes too big.

Throughout this section, we denote the higher moments by1

skewness: γ =
µ3

σ3

kurtosis: δ =
µ4

σ4
,

where µk is the k-th central moment, µk = E
[(

X̃ − E
[
X̃

])k]
, and σ2 = µ2. Note that

both moments are independent of the value of the mean and variance. For the rest of the
section, we thus set mean to zero and variance to one—in conformity with the paper.

First, we should explain what is meant by “too small kurtosis”. Pearson, 1916 proved
that, for a given value of skewness γ, there is a lower bound on the possible value of the
kurtosis,

δ ≥ 1 + γ2 .

In addition, Klaassen et al., 2000 showed that, in the case of unimodal distributions, the
bound is

δ ≥ 189

125
+ γ2 = 1.52 + γ2 ,

so all distributions between these two bounds are multi-modal. It is thus not surprising
that they can not be obtained by a single cubic transformation of the (unimodal) normal
distribution.

The easiest remedy of the problem is to repeat the cubic transformation several times.
This, together with trying several starting samples, usually solves the problem, at least

1The standard notation would be γ1 for skewness and γ2 for normalised kurtosis, so our notation is
γ = γ1 and δ = γ2 + 3. The reason for the choice is that we need to divide by the kurtosis later, which is
not possible with the standard definition, since γ2 can be zero.
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with our implementation of the cubic transformation. To illustrate the approach, we have
tested 50, 000 combinations of skewness and kurtosis, sampled uniformly from

{(γ, δ), γ ∈ [0, 10], δ ∈ [δγ, 2δγ]} ,

where δγ denotes the minimal kurtosis, δγ = 1 + γ2. For every combination, we start
with a sample of 10, 000 outcomes2 from the standard normal distribution, and try to
transform the sample to a distribution with the given skewness and kurtosis, using the cubic
transformation. When we do not obtain the desired moments after ten transformations, we
mark the combination as inaccessible, otherwise we store the number of transformations.

From the 50, 000 combinations, only 55 were not obtained in 10 transformations—and
all were very close to the lower bound: Table 1 presents the maximal and average distances
from the bound, both in absolute (δ − δγ) and relative (δ/δγ−1) values. For comparison:
from the combinations we were able to obtain, the one closest to the lower bound had the
absolute distance of 0.014, and relative distance of 0.01%.

Table 1: Distance of the combinations (γ, δ) we were not able to generate, from the
theoretical lower bound (γ, δγ).

distance from bound
statistics absolute relative
average 0.015 0.17%

max 0.051 0.93%

We have also created a “map” showing the number of transformations needed to achieve
different combinations of skewness and kurtosis. To obtain the map, we had to run the
test on the whole region, not only along the bound as in the previous test. The result
of the test is presented in Figure 1. An interesting observation is that there is also an
upper bound for kurtosis that can be achieved by a single cubic transformation of the
standard normal distribution—as far as we know, this has not been reported before. With
our implementation, the upper bound is approximately 88.5. (There is a corresponding
bound for two transformations, but it starts at kurtosis of about 3000 for zero skewness and
increases to more than 4000 for skewness of 50. Hence, the maximal achievable kurtosis
can be seen as unlimited for most practical purposes.)

It is important to realize that the repetition of the cubic transformation would be
impossible with the original formulation from Fleishman, 1978, since it assumes that the
starting distribution is exactly normal. Our implementation, however, allows starting with
arbitrary distribution, as long as we can compute the first twelve moments.3 This makes the
computation of the coefficients more difficult, but on the other hand practically eliminates

2The relatively high number of scenarios was chosen in order to ensure that the starting discretization
is sufficiently close to the standard normal distribution.

3This is why we can use it in the iterative loop in Step 5 of the algorithm.
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Figure 1: Combinations of skewness and kurtosis accessible by a repeated cubic trans-
formation of the standard normal distribution. The numbers show the number of cubic
transformations needed to obtain distributions from the corresponding areas. The low-
est region contains infeasible combinations of skewness and kurtosis.

the biggest problem of Fleishman’s method, the inability of generating distributions with
low kurtosis.

An alternative to repeating the cubic transformation is to start with a different dis-
tribution than the standard normal. For example, if the kurtosis is below the bound for
unimodal distributions, we may try a mixture of two normal distributions: Kurtosis de-
creases with the distance of the two components of the mixture. In some occasions, uniform
distribution may help—this is, however, not recommended because of the non-smoothness
of the distribution.

As a more sophisticated alternative, we may consider using a different method than the
cubic transformation to obtain the starting value Yi for the random variable Ỹi in Step 5
of the algorithm. A good source of information is Tadikamalla, 1980, who presents and
compares six different methods, where three are capable of generating distributions with
any feasible combination of skewness and kurtosis: the Johnson system of distributions
from Johnson, 1949, the Tadikamalla-Johnson system from Tadikamalla and Johnson,
1979, and the Schmeiser-Deutch system from Schmeiser and Deutch, 1997.

Note that the special approach—either repeating the cubic transformation, or using
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some of the mentioned alternatives—is needed only in order to get a starting point for the
iterative procedure in Section 5. Inside the loop, we always use the cubic transformation:
Even if the cubic transformation is not capable of entering the low-kurtosis region, it works
inside it.

New implementation

As mentioned in the “Future work” part of the paper, we have implemented the algorithm
in the C programming language. The cubic transformation, which is the crucial part of the
algorithm, was implemented by Diego Mathieu from INSA Toulouse, France, during his
visit at Molde University College in the summer of 2002. The code has been compiled for
Win32 using both Microsoft Visual C++ and MinGW (GCC for Win32), so it should compile
on other platforms as well.

The new implementation provides two major improvements compare to the original
AMPL implementation: It is more than ten times faster, and it is a stand-alone code, so it
is not dependent on any commercial solver.

The issue of distributions with low kurtosis has been addressed by allowing several rep-
etitions of the cubic transformation. Diego Mathieu has also implemented the Schmeiser-
Deutch system from Schmeiser and Deutch, 1997, but it has not yet been included in the
code—mostly because we have not yet encountered a real case where we could not generate
the scenarios using the current implementation.
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