
A Heuristic for Moment-matching
Scenario Generation

Høyland, Kjetil and Kaut, Michal and Wallace, Stein W.
SINTEF Technology and Society, Trondheim, Norway

in: Computational Optimization and Applications. See also BibTEX entry below.

BibTEX:

@article{HoylandEA00,

author = {H{\o}yland, Kjetil and Kaut, Michal and Wallace, Stein W.},

title = {A Heuristic for Moment-matching Scenario Generation},

journal = {Computational Optimization and Applications},

year = {2003},

volume = {24},

pages = {169--185},

number = {2--3},

doi = {10.1023/A:1021853807313},

}

© Kluwer Academic Publishers 2003, now part of Springer Science+Business Media.
The original publication is available at www.springerlink.com.

Document created on October 21, 2012.
Cover page generated with CoverPage.sty.

http://dx.doi.org/doi:10.1023/A:1021853807313


A Heuristic for Moment-matching Scenario
Generation

Kjetil Høyland
kjetil.hoyland@gjensidige.no

∗
Michal Kaut

michal.kaut@iot.ntnu.no
†

Stein W. Wallace
stein.w.wallace@himolde.no

‡

June 20, 2000; revised May 11, 2001, August 12, 2002

In stochastic programming models we always face the problem of how to
represent the random variables. This is particularly difficult with multidi-
mensional distributions. We present an algorithm that produces a discrete
joint distribution consistent with specified values of the first four marginal
moments and correlations. The joint distribution is constructed by decom-
posing the multivariate problem into univariate ones, and using an itera-
tive procedure that combines simulation, Cholesky decomposition and vari-
ous transformations to achieve the correct correlations without changing the
marginal moments.

With the algorithm, we can generate 1000 one-period scenarios for 12
random variables in 16 seconds, and for 20 random variables in 48 seconds,
on a Pentium III machine.

Keywords: stochastic programming, scenario tree generation, Cholesky decomposi-
tion, heuristics

1. Introduction

Gjensidige Nor Asset Management (GNAM) has NOK 65 billion (7 billion US$) under
management. During the last few years they have used stochastic-programming-based
asset allocation models in their asset allocation processes. The most important step in
that process is to establish the market expectations, i.e. to establish what are their beliefs
for the major asset categories (bonds, stocks, cash, commodities and currencies) in differ-
ent major regions of the world. The decision-makers prefer to express their expectations
in terms of marginal distributions of the return / interest rates for the different asset
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classes in addition to correlations. The challenge in converting these expectations into
an asset allocation mix is twofold: First we need to convert the expectations into a for-
mat which a stochastic programming model can handle, second we need an optimization
model which gives us the optimal asset mix, given this input.

Practical experience has told us that the first part, the scenario generation, can in
fact be the most challenging and (computer-) time consuming one. For the purpose of
generating the input data, GNAM has been using the method described in (Høyland
and Wallace, 2001), a method developed in 1996. For larger problems, with many asset
classes, the scenario generation became the bottleneck in the portfolio optimization
process. This paper presents an algorithm that reduces the computing time for the
scenario generation substantially.

The most well-known applications of asset allocation models are the Russell-Yasuda-
Kasai model in (Cariño and Ziemba, 1998) and the models implemented by Towers
Perrin in (Mulvey, 1996). Other applications can be found in (Consigli and Dempster,
1998) and (Dert, 1995).

These models are all focused on long term strategic asset liability planning. Stochastic
processes are widely used for scenario generation in such models. The big challenge
with such processes is to calibrate the parameters so that the generated scenarios are
consistent with the decision-maker’s beliefs of the future development of the asset classes.
In many applications, the parameters are calibrated so that the future scenarios are
consistent with the past. This might be acceptable for long term strategic planning.
For tactical short term planning, i.e. for the question of how to construct an asset
allocation mix relative to an asset allocation benchmark, such approaches are, however,
inappropriate. The user wishes to express views on the future which deviate from the
past. It is then important that the decision-maker can express the market expectations
in a way that he or she finds convenient and that these expectations are converted to
model input in a consistent manner.

This is the basic philosophy of the scenario generation method proposed in (Høyland
and Wallace, 2001). The user specifies his or her market expectations in terms of
marginal distributions for each asset class, in addition to correlations among the dif-
ferent asset classes, and possibly other distributional properties. The stochastic, pos-
sibly multi-period, asset allocation model requires discrete outcomes for the uncertain
variables. To generate these outcomes a least squares model is applied. The idea is to
minimize the distance between some specified properties of the generated outcomes and
their target values (either specified directly or derived from the marginal distributions,
which may themselves be calculated from data or specified explicitly).

In the general form of the algorithm presented by Høyland and Wallace, outcomes of all
the random variables (assets) are generated simultaneously. Such an approach becomes
slow when the number of random variables increases. In this paper we generate one
marginal distribution at a time and create the joint distribution by putting the marginal
distributions together in the following way: All marginal distributions are generated with
the same number of realizations, and the probability of the i’th realization is the same
for each marginal distribution. The i’th scenario, that is, the i’th realization of the joint
distribution, is then created by using the i’th realization from each marginal distribution,
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and given the corresponding probability. We then apply various transformations in an
iterative loop to reach the target moments and correlations.

The presented algorithm is inspired by the work of (Fleishman, 1978), (Vale, 1983) and
(Lurie and Goldberg, 1998). Fleishman presents a cubic transformation that transforms
a sample from a univariate normal distribution to a distribution satisfying some specified
values for the first four moments. Vale and Maurelli address the multivariate case and
analyse how the correlations are changed when the cubic transformation is applied. The
algorithm assumes that we start out with multivariate normals. The initial correlations
are adjusted so that the correlations after the cubic transformation are the desired ones.
The algorithm is only approximate with no guarantee about the level of the error.

Lurie and Goldberg outlined an algorithm that is of similar type as ours. They also
generate marginal distributions independently and transform them in an iterative proce-
dure. There are, however, two major differences between the two algorithms. One is in
the way they handle the (inevitable) change of distribution during the transition to the
multivariate distribution — while they modify the correlation matrix in order to end up
with the right distribution, we modify the starting moments. The other major difference
is that they start out with parametric marginal distributions whereas we start out with
the marginal moments. We believe that specifying marginal moments is a more flexible
approach and we certainly could also derive the marginal moments (up to the desired
number) from the parametric distribution and apply our approach.

The rest of the paper is organized as follows: In Section 2 we present the algorithm.
Numerical results are presented in Section 3, while possible future research areas are
discussed in Section 4.

2. The algorithm

In Høyland and Wallace’s method, a scenario tree can in principle be constructed to
fit all distributional properties that can be formulated as functions of probabilities and
outcomes. In this section, we will assume that the properties are the first four marginal
moments and the correlations. This assumption is consistent with many other studies,
as well as our own empirical analysis in (Høyland and Wallace, 2001) of what were the
important properties in the given case study. The presented methodology can, in fact,
treat more than four marginal moments and correlations. We could specify even higher
moments, but the method is more restrictive than our original approach, which also
allowed for such as extreme values.

The general idea of the algorithm is as follows: Generate n discrete univariate random
variables, each satisfying a specification for the first four moments. Transform them
so that the resulting random vector is consistent with a given correlation matrix. The
transformation will distort the marginal moments of higher than second order. Hence,
we need to start out with a different set of higher moments, so that we end up with the
right ones.

The procedure would lead to the exact desired values for the correlations and the
marginal moments if the generated univariate random variables were independent. This
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is, however, true only when the number of outcomes goes to infinity and all the sce-
narios are equally probable.1 With a limited number of outcomes, and possibly distinct
probabilities, the marginal moments and the correlations will therefore not fully match
the specifications. To be able to secure that the error is within a pre-specified range, we
have developed an iterative algorithm, which is an extension of the core algorithm.

Section 2.1 discusses the assumptions we have on the correlation matrix, Section 2.2
introduces necessary notation, Section 2.3 explains the key transformations used in the
algorithm, Section 2.4 describes the core module of the algorithm, while Section 2.5
explains the iterative procedure.

2.1. Assumption on the correlation matrix

There are two assumptions on the specified correlation matrix R. The first is a general
assumption that R is a possible correlation matrix, i.e. that it is a symmetric positive
semi-definite matrix with 1’s on the main diagonal. While implementing the algorithm
there is no need to check positive semi-definiteness directly, as we do a Cholesky de-
composition of the matrix R at the very start. If R is not positive semi-definite, the
Cholesky decomposition will fail.

Note that having an R that is not positive semi-definite means having some internal
inconsistency in the data, so we should re-run our analysis. As an alternative, there exist
several algorithms that find a possible correlation matrix that is, in some sense, closest
to the specified matrix R. One such algorithm can be found in (Higham, 2000). Another
approach is used in (Lurie and Goldberg, 1998), where a QP model is formulated to solve
the problem. The latter approach has an advantage of being very flexible and allowing,
for example, for specifying weights that express how much we believe in every single
correlation. We can also use bounds to restrict the possible values.

The other assumption is that the random variables are not collinear, so that R is a
non-singular — hence positive definite — matrix. For checking this property we can
again use the Cholesky decomposition, because the resulting lower-triangular matrix L
will have zero(s) on its main diagonal in a case of collinearity.

This is not a serious restriction, since having collinearity means that at least one of the
variables can be computed from the others after the generation. We can thus decrease
the dimension of the problem.

2.2. Notation

To formulate the model we introduce the following notation. Note that vectors are
columns by default.

n number of random variables
s number of scenarios

1 With unequal probabilities, we can expect the extreme cases to accumulate in the scenarios with the
smallest probabilities, while the most probable scenarios would end up with outcomes close to their
respective means. That would result in dependencies.
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X̃ general n-dimensional random variable

→ X̃ = (X̃1, X̃2, . . . , X̃n)

→ every moment of X̃ is a vector of size n

→ the correlation matrix of X̃ is a matrix of size n× n
X matrix of s scenario outcomes — X has dimension n× s
Xi row vector of outcomes of the i’th random variable — dim. s
P row vector of scenario probabilities — given by the user

X̃ discrete n-dimensional random variable given by X and P
E
[
X̃
]

or E
[
X̃
]

vector of means of a random variable (general or discrete)

RV(mom; corr) the set of all random variables with moments mom = mom1,
mom2, . . . ,mom4, and a correlation matrix corr, where every
momi is a vector of size n and corr is a matrix of size n× n

TARMOM matrix of target moments (4× n)
R target correlation matrix (n× n)

Note the use of calligraphic letters — X̃ — to represent a discrete random variable
given by X and P. Hence, we use X̃ when we refer to a general distribution (continuous
or discrete), while X̃ is always discrete, and always part of a construction eventually
leading to the scenario tree we are about to make. Since the scenario probabilities P are
given, generating the discrete random variable X̃ is equivalent to generating a matrix of
its outcomes X. The two terms are thus very closely connected, even if X̃ is a random
variable, while X is a matrix.

Our goal is to generate scenarios with outcomes Z, such that the discrete random
variable Z̃ defined by those outcomes and the scenario probabilities P has moments
equal to TARMOM and a correlation matrix equal to R. In our notation we want to
generate a discrete random variable Z̃ such that Z̃ ∈ RV(TARMOM ;R).

2.3. Key transformations

The core module, which will be presented in the next section, has two key transforma-
tions. One is a cubic transformation used for generating univariate distributions with
specified moments. The other is a matrix transformation used to transform a multivari-
ate distribution to obtain a given correlation matrix.

2.3.1. Cubic transformation

This transformation comes from (Fleishman, 1978), where a method to generate a uni-
variate non-normal random variable Ỹi with given first four moments is introduced.2 It
takes a N (0, 1) variable X̃i and uses a cubic transformation

Ỹi = a+ bX̃i + cX̃2
i + dX̃3

i

2 The index i is obsolete in this section, but we use it for consistence with the rest of the paper.
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to obtain Ỹi with the target moments. Parameters a, b, c and d are found by solving a
system of non-linear equations. Those equations utilize normality of the variable X̃i.

The problem of this approach is that X̃i must have the first 12 moments equal to
those of N (0, 1) in order to get exactly the target moments of Ỹi. Since this is hard to
achieve, either by sampling or discretization, the results with those formulas are only
approximate. We have thus dropped the assumption of normality and derived formulas
that work with an arbitrary random variable X̃i — see Appendix A. Parameters a, b, c
and d are now given by a system of four implicit equations.

We have used a non-linear mathematical-programming (least-squares) model to solve
the system. In this model we have a, b, c and d as decision variables, and we express the
moments of Ỹi as functions of these variables and the first 12 moments of X̃ .3 We then
minimize the distance between those moments and their target values. We do not need
to assume that the system has a solution — if the solution does not exist, the model
gives us the Ỹi with the closest possible moments.

Our method for generating a discrete approximation Ỹi of Ỹi is thus as follows:

• take some discrete r.v. X̃i with the same number of outcomes as Ỹi
• calculate the first 12 moments from X̃i

• compute the parameters a, b, c, d

• compute the outcomes Yi of Ỹi as Yi = a+ bXi + cX2
i + dX3

i

2.3.2. Matrix transformation

Our other main tool in the algorithm is a matrix transformation of a random variable
X̃

Ỹ = L X̃

where L is a lower-triangular matrix. The matrix L always comes from a Cholesky
decomposition of the correlation matrix R, so we have LLT = R.4

From theory we know that if X̃ is an n-dimensional N (0, 1) random variable with
correlation matrix I (and therefore with X̃i mutually independent), then the Ỹ = L X̃
is an n-dimensional N (0, 1) random variable with correlation matrix R = LLT .

Since we do not have normal variables, we need a more general result. To make
the formulas as simple as possible, we restrict ourselves to the case of zero means and
variances equal to 1. In the beginning of Section 2.4 we show how to deal with this
restriction. Note that E[X̃] = 0 leads to momi = E[X̃i]. We will thus use the two
interchangeably for the rest of the section.

In Appendix B, we show that, in that case, Ỹ (= L X̃) is an n-dimensional random
variable with zero means, variances equal to 1, and correlation matrix R = LLT . In
addition, the higher moments of Ỹ are as follows:

3 Since we have switched from general random variables to a discrete scenario model, we have to switch
the notation from Ỹ to Ỹ.

4 Note that L always exists, since we assume R to be positive semi-definite.
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E
[
Ỹ 3
i

]
=

i∑
j=1

L3
ij E

[
X̃3

j

]

E
[
Ỹ 4
i

]
− 3 =

i∑
j=1

L4
ij

(
E
[
X̃4

j

]
− 3
)

We will need also the opposite direction of the transformation:

X̃ = L−1 Ỹ .

Since L−1 is a triangular matrix, it is easy to invert the formulas:

E
[
X̃3

i

]
=

1

L3
ii

E
[
Ỹ 3
i

]
−

i−1∑
j=1

L3
ij E

[
X̃3

j

]
E
[
X̃4

i

]
− 3 =

1

L4
ii

E [Ỹ 4
i

]
− 3−

i−1∑
j=1

L4
ij

(
E
[
X̃4

j

]
− 3
)

We divide only by the diagonal elements Lii in these formulas. We can do it since Lii

are positive due to regularity (positive definiteness) of R.

2.4. The core algorithm

This section presents the core algorithm. It runs as follows: Find the target marginal
moments from stochastic processes, from statistics or by specifying them directly. Gen-
erate n discrete random variables with these moments. Create the multivariate random
variable by combining the univariate variables, as explained in the Introduction. Trans-
form this variable so that it has the desired correlations and marginal moments. If the
random variables X̃i were independent, we would end up with Ỹ having exactly the
desired properties.

To facilitate the reading, we have divided the algorithm in two parts. In the input
phase we read the target properties specified by the user and transform them to a form
needed by the algorithm. In the output phase we generate the distributions and transform
them to the original properties.

2.4.1. The input phase

In this phase we work only with the target moments and correlations, we do not yet have
any outcomes. This means that all operations are fast and independent of the number
of scenarios s.

Our goal is to generate a discrete approximation Z̃ of an n-dimensional random vari-
able Z̃ with moments TARMOM and correlation matrix R. Since the matrix trans-
formation needs zero means and variances equal to 1, we have to change the targets to
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match this requirement. Instead of Z̃ we will thus generate random variables Ỹ with
moments MOM (and correlation matrix R), such that MOM1 = 0, and MOM2 = 1.
Z̃ is then computed at the very end of the algorithm as

Z̃ = αỸ + β.

It is easily shown that the values leading to the correct Z̃ are:

α = TARMOM
1/
2

2 MOM3 =
TARMOM3

α3

β = TARMOM1 MOM4 =
TARMOM4

α4

The final step in the input phase is to derive moments of independent univariate
random variables X̃i such that Ỹ = L X̃ will have the target moments and correlations.
To do this we need to find the Cholesky-decomposition matrix L, i.e. a lower-triangular
matrix L so that R = LLT .

The input phase then contains the following steps:

1. Specify the target moments TARMOM and target correlation matrix R of Z̃ (and
Z̃)

2. Find the normalized moments MOM for Ỹ

3. Compute L and find the transformed moments TRSFMOM for X̃ — see Section
2.3.2

�
�

�
�user -Step 1 TARMOM,R

(for Z̃)
-Step 2 MOM,R

(for Ỹ)
-Step 3 TRSFMOM, I

(for X̃ )

Figure 1: Input Phase

2.4.2. The output phase

In this phase we start by generating the outcomes for the independent random variables.
Next, we transform them to get the intermediate-target moments and target correlations,
and finally obtain the moments specified by the user. Since the last transformation is a
linear one, it will not change the correlations. All the transformations in this phase are
with the outcomes, so the computing time needed for this phase is longer and increases
with the number of scenarios.

We start by generating n discrete univariate random variables X̃i. This is a well-
known problem and there are several possible ways to do it. We have used a method
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from (Fleishman, 1978), in a way described in Section 2.3.1. The method starts by
sampling from N (0, 1) and afterwards uses the cubic transformation to get the desired
moments. For the starting N (0, 1) sample we use a random-number generator. An
alternative would be to use a discretization of the distribution, or some other method
for discretizing N (0, 1), for example the method described in (Høyland and Wallace,
2001).

Once we have generated the outcomes Xi for the random variables X̃i, we can proceed
with the transformations. First Y = LX to get the target correlations and then Z =
αY + β to get the user-specified moments.5

The output phase of the core algorithm consists of the following steps:

4. Generate outcomes Xi of 1-dimensional variables X̃i (independently for i = 1 . . . n)

5. Transform X̃ to the target correlations: Y = LX → Ỹ ∈ RV(MOM ;R)

6. Transform Z̃ to the original moments: Z = αY + β → Z̃ ∈ RV(TARMOM ;R)

-Step 4 X̃
TRSFMOM,R

-Step 5 Ỹ
MOM,R

-Step 6 Z̃
TARMOM, I

-Step 1
�
�

�
�user

Figure 2: Output Phase

2.5. The modified algorithm

We know that the core algorithm gives us the exact results only if the random variables
X̃i are independent. Since we generate each set of outcomes Xi separately, and have a
limited number of outcomes, the resulting co-moments will most certainly differ from
zero and the results of the core algorithm will be only approximate.

The modified algorithm is iterative, so all results are still approximate, but with a
pre-specified maximal error. Hence, we can control the quality of the results. We will
again use the matrix transformation Y = LX, this time both forward and backward, as
mentioned in 2.3.2. Recall that this transform allows us to obtain a desired correlation
matrix, but it changes the marginal moments while doing so.

In Section 2.3.1 we showed that the cubic transformation allows us to transform a
general univariate random variable X̃i to a variable with some target moments. This
transformation changes the correlations, but if the starting X̃i’s have moments close to
their targets, the changes in the correlations are expected to be small.

The idea of the new algorithm is thus to introduce iterative loops in the core algorithm,
namely in Steps 4 and 5, in the following way:

5 Note that as we have stopped to speak about distributions and started to speak about outcomes, we
have to change the notation from X̃ to X.
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The purpose of Step 4 is to generate the independent random variables X̃i. Since
independence is very hard to achieve, we change our target to generating uncorrelated
r.v. X̃i, i.e. we seek to get X̃ ∈ RV(TRSFMOM ; I). We use an iterative approach to
achieve those properties.

Since we do not control the higher co-moments, they will most likely not be zero, and
the Ỹ obtained in Step 5 will not have the target properties. We thus need another loop
there to end up with the desired Ỹ.

The iterative versions of Steps 4 and 5 are:6

Step 4

4.i. Generate n univariate random variables with moments TRSFMOM (indepen-
dently)

→ we get X̃ with correlation matrix R1 close to I due to the independent
generation

4.ii. let p = 1 and X̃1 = X̃

4.iii. while dist(Rp; I) > εx do

4.iv. do Cholesky decomposition: Rp = Lp L
T
p

4.v. do backward transform X∗
p = L−1Xp → X̃ ∗ has zero correlations, wrong

moments

4.vi. do cubic transform of X̃ ∗
p with TRSFMOM as the target moments;

store results as X̃p+1 → right moments, wrong correlations

4.vii. compute correlation matrix Rp+1

4.viii. let p = p+ 1

4.ix. let X̃ = X̃p → X̃ ∈ RV(TRSFMOM ;Rp) with correlation error dist(Rp; I) ≤
εx

A root-mean-squared-error is used as the measure dist() in 4.iii, see Section 3 for an
exact definition. The same distance is used also in Step 5 below (in steps 5.iii and 5.ix).
Since X̃ is not a final output, the maximum error εx in Step 4 is typically higher than
the corresponding εy in Step 5.

There are two possible outcomes from Step 4: X̃p corresponding to random variables
with right moments and slightly off correlations, and X̃ ∗

p−1 corresponding to random
variables with slightly off moments and zero correlations. We start with the latter in
Step 5, and denote it X̃ ∗.

Step 5

5.i. Ỹ1 = L X̃ ∗ → both moments and correlations are incorrect
(due to higher co-moments different from zero)

6 As we have not found any better notation, in the rest of this section lower index p denotes an iteration
counter, not a matrix column.
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5.ii. let p = 1 and let R1 be the correlation matrix of Ỹ1

5.iii. while dist(Rp;R) > εy do

5.iv. do Cholesky decomposition: Rp = Lp L
T
p

5.v. do backward transform Y∗
p = L−1

p Yp

→ Ỹp has zero correlations, incorrect moments

5.vi. do forward transform Y∗∗
p = LY∗

p

→ Ỹp has correct correlations (R), incorrect moments

5.vii. do cubic transform of Ỹ∗∗
p with MOM as the target moments;

store results as Ỹp+1 → Ỹp+1 ∈ RV(MOM ;Rp+1)

5.viii. let p = p+ 1

5.ix. let Ỹ = Ỹp → Ỹ ∈ (MOM ;Rp) with correlation error dist(Rp;R) ≤ εy

Note that we can again choose two different outcomes from Step 5 (and thus from the
whole algorithm). After Step 5.ix, Ỹ has the right moments and (slightly) off correlation.
If we prefer exact correlations, we can either use the last Ỹ∗∗

p , or repeat Steps 5.iv – 5.vi
just before we go to Step 5.ix.

Note also that Steps 5.v and 5.vi are written as individual steps for the sake of clarity.
Since we have always s > n (usually s � n), it is much more efficient to join the two
steps and calculate Y∗∗

p =
(
L× L−1

p

)
Yp directly.

2.5.1. Convergence

The issue of convergence to the target moments and correlations is difficult. First, we
know that the method cannot converge in general, since it is possible to specify combi-
nations of moments that cannot exist. In addition, we need to have enough scenarios,
where the minimal number of scenarios depends not only on the number of random
variables n, but also on the structure of the problem. For example, random variables
with distribution close to the normal, and with small correlations, typically need fewer
scenarios than random variables with fat tails and high correlations.

We have not succeeded in producing a convergence proof, but more than two years
of active use in Gjensidige NOR has so far never left us with an unsolvable case. The
algorithm is stopped whenever a prespecified number of iterations has been performed,
or the convergence criteria are satisfied. Whatever the reason, it is straightforward to
test if the resulting scenario tree has the required properties (and also if it is arbitrage-
free). Hence, when a tree is used in an optimization model, it always has the required
properties.

Therefore, the concern is not that we risk using a tree with bad properties, but rather
that we are left with no tree at all because the algorithm either converges to the wrong
solution or diverges.

If the algorithm does not converge to the right solution, our first approach is always
to try to rerun the algorithm a few times, in reality, trying to start the whole process

11



with a different set of independent random variables in Step 4.i. If that does not work,
we try to increase the number of scenarios. Unless we know for sure that the specified
set of properties exist (for example because they are calculated from a data set or from
given distributions) we next try to find out if we may have defined random variables
that do not exist. By these three means, we have always found a solution.

It is worth noting that when the method is used on a continuous basis, the user learns
how many scenarios are needed for his problem. Also, he will know whether or not he
has specified the properties in such a way that the implied distribution exists. This
will limit the possible actions. Our experience is that it is enough to first check for
actual errors (bugs) in the specifications, and then rerun the algorithm a few times from
different starting points.

A numerical test of convergence is in Section 3.1.

3. Numerical results

This section presents the times needed to generate scenario trees with different numbers
of random variables and scenarios.

To see how the generation time depends on the number of random variables and the
number of scenarios, we have generated trees with 4, 8, 12 and 20 random variables and
40, 100, 200 and 1000 scenarios. Except the case of four random variables, we have used
actual data from Gjensidige NOR as input. In addition, we have used two different data
sets in the cases of 12 and 20 random variables to improve the estimates. Since we did
not have any distinct case with only four random variables, we have used the first four
variables from the first 12-variable case. A more detailed description of the input data
can be found in http://home.himolde.no/˜wallace/reports.htm.

The algorithm is implemented in AMPL with MINOS 5.5 as a solver. The test was done
on a Pentium III 500 MHz machine with 256 MB memory, running Windows NT 4.0.
As a distance used for evaluating the quality of the distributions in Steps 4 and 5 of the
algorithm, we have used a root-mean-squared-error defined as

RMSE =

√
1

Nel

∑
k

(valuek − TARGETk)2

where Nel is the number of elements in the sum. The distance was evaluated separately
for moments (Nel = 4n) and for correlations (Nel = n(n−1)

2 ).
The stopping-values were εx = 0.1 (εx = 0.2 in the case of 20 r.v.) and εy = 0.01.

Note that the distances are evaluated inside the algorithm, where all the data are scaled
to variance equal to 1, so they are scale-independent. Using the formulas in Section
2.4.1, one can show that the maximum error of the i’th moment in the final output is
TARMOM i

i · εy.
Results of the tests are in Table 1. As we see, we can find trees with as much as 1000

scenarios in less than a minute. It is worth observing that as the number of scenarios
increases, the computing time decreases. This strange behavior is caused by a better
convergence for larger trees, i.e. the fact that the number of iterations decreases with
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Table 1: Running times for different numbers of random variables and scenarios. Times
are given in format mm:ss.

Number of scenarios

r.v. 40 100 200 1000

4 00:01 00:01 00:01 00:05

8 00:04 00:04 00:03 00:10

12 00:09 00:07 00:06 00:16

20 01:05 00:44 00:31 00:48

the size of a tree: with 40 scenarios we need typically 1–2 iterations in Step 4 of the
algorithm (generation of X̃ ) and 2–3 iterations in Step 5 (generation of Ỹ), whereas with
1000 scenarios we usually need only one iteration in each part. Since we cannot have less
than one iteration, there will be no more improvement in the convergence for trees with
more than 1000 scenarios. We can thus expect approximately linear time-dependency
for very large trees.

It may be of interest to compare these times with what we observe by using the method
in (Høyland and Wallace, 2001). Table 2 shows the results for 1000 scenarios. As we
see, the savings are substantial.

Table 2: Running times for creating 1000 scenarios. In the first column are times for
the algorithm from (Høyland and Wallace, 2001), in the second column times
for the new algorithm. The last column presents the speed-up. Times are given
in format [h:]mm:ss.

r.v. old alg. new alg. speed-up

4 00:35 00:05 7.5×
8 08:39 00:10 53×

12 17:54 00:16 66×
20 1:34:46 00:48 119×

3.1. Convergence test

As mentioned in Section 2.5.1, we do not have a convergence proof for the iterative
algorithm presented in Section 2.5. We have thus tested the convergence numerically.
The iterative procedure is used in steps 4 and 5 of the algorithm. Step 4 is, however,
used only to obtain a reasonable starting point for Step 5, so the convergence is not as
important there. Hence, we only present convergence tests for Step 5.

For the test, we have chosen the smallest and the biggest cases from the data used
in the main test, namely 40 scenarios for 4 random variables and 1000 scenarios for 20
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random variables. For both sets, we have run the algorithm 25 times, each time with a
different initial set of scenarios.

We have measured an error in moments after the matrix transformation and an error
in correlations after the cubic transformation. The other two combinations are not
interesting, since both transformations set “their” errors to zero. Hence, the two errors
are equal to the total errors after the given transformation.7

Results of the test are in Figure 3. Every iteration consists of the matrix transforma-
tion (Steps 5.iv. . . 5.vi) and the cubic transformation (Step 5.vii). We see that both the
errors are monotonously decreasing. Hence, also the total error at the end of an itera-
tion is monotonously decreasing. This is actually true not only for the average values
depicted in the graphs, but for all the 25 runs, in both test cases.

4. Future work

The most important subject for future research is the convergence of the algorithm. Since
we do not have a convergence proof, we should try to obtain a better understanding of
the convergence. In particular, we should try to identify statistical properties that would
guarantee/prevent convergence. Another interesting problem is the minimum number
of scenarios needed to achieve given precision for a given set of properties.

In many cases we are interested in multi-period scenario trees. It is a future challenge
to see how the presented method can be used as a building block for a larger tree,
particularly how to preserve time series properties.

Even though we have achieved a substantial computational speed, the tested imple-
mentation is still far from optimal. In the current AMPL implementation, the algorithm
spends most of its time with the Cholesky transformation and the communication with
the solver before and after the cubic transform.

Both these critical times can be eliminated or decreased by implementing the algorithm
in a compiled form. A C++ implementation is currently being developed at SINTEF8

research institute, and according to the first tests is more than 10 times faster than our
AMPL code. This implementation is part of OMEGA-IST-1999-12088, an EU financed
project on electricity production i deregulated markets.

The presented algorithm is well suited for parallel implementation, because most of
its parts can be processed independently for each random variable. The only step of
the algorithm that uses considerable amount of time and cannot be parallelized in this
simple way is the Cholesky decomposition of the correlation matrix, but parallel codes
for the Cholesky decomposition can also be found.

7 We define the total error as a sum of the errors in moments and correlations. After every transfor-
mation one of the errors is zero, hence the total is equal to the other one.

8 The Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology
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Figure 3: Convergence of the iterative algorithm. In both cases, the algorithm was run
25 times. Lines represent average errors after every iteration, bars represents
the best and the worst cases. The dashed lines represents errors in moments
after the matrix transformation, the solid line errors in correlations after the
cubic transformation. The root-mean-squared-error is defined in Section 3.
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5. Conclusions

We have presented an algorithm to generate scenarios for multivariate random variables.
The purpose of the algorithm is to speed up an existing scenario generation algorithm,
which constructs multi-dimensional scenario trees with specified moments and correla-
tions.

The original algorithm constructs the multidimensional scenario tree by solving a sin-
gle, potentially very large, least squares problem. The main idea of the new algorithm
is to decompose the least squares problem so that each marginal distribution is con-
structed separately. To combine the different marginal distributions so that the joint
distribution satisfies the specified correlations, we apply a Cholesky decomposition and
a cubic transformation in an iterative procedure.

Even if we cannot guarantee convergence of this procedure, our experience shows that
it does converge if the specifications are possible and there are enough scenarios. In
addition, a potential divergence or convergence to the wrong solution is easy to detect.
Hence, we never end up using an incorrect tree in the optimization procedure.

Testing shows that our algorithm is reasonably fast. We can find trees with 1000
scenarios representing 20 random variables in less than one minute.
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Appendix

A. Cubic transformation Ỹ = a + bX̃ + cX̃2 + dX̃3

The purpose of this transformation is to produce a univariate random variable Ỹi with
specified first four moments E

[
Ỹ k
i

]
, k = 1, . . . , 4, given the random variable X̃i with

known first 12 moments E
[
X̃k

i

]
, k = 1, . . . , 12.

The problem is to find the transform parameters ai, bi, ci and di. For this we have to
express E

[
Ỹ k
i

]
as functions of E

[
X̃k

i

]
. The formulas can be stated either for univariate

random variables Ỹi, or as a vector equations for the random vector Ỹ . The only differ-
ence is the presence/absence of index i in all elements. To make the formulas easier to
read, we use the vector form.
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E
[
Ỹ
]

= a+ bE
[
X̃
]

+ cE
[
X̃2
]

+ dE
[
X̃3
]

E
[
Ỹ 2
]

= d2E
[
X̃6
]

+ 2cdE
[
X̃5
]

+ (2bd+ c2)E
[
X̃4
]

+ (2ad+ 2bc)E
[
X̃3
]

+ (2ac+ b2)E
[
X̃2
]

+ 2abE
[
X̃
]

+ a2

E
[
Ỹ 3
]

= d3E
[
X̃9
]

+ 3cd2E
[
X̃8
]

+ (3bd2 + 3c2d)E
[
X̃7
]

+ (3ad2 + 6bcd+ c3)E
[
X̃6
]

+ (6acd+ 3b2d+ 3bc2)E
[
X̃5
]

+ (a(6bd+ 3c2) + 3b2c)E
[
X̃4
]

+ (3a2d+ 6abc+ b3)E
[
X̃3
]

+ (3a2c+ 3ab2)E
[
X̃2
]

+ 3a2bE
[
X̃
]

+ a3

E
[
Ỹ 4
]

= d4E
[
X̃12

]
+ 4cd3E

[
X̃11

]
+ (4bd3 + 6c2d2)E

[
X̃10

]
+ (4ad3 + 12bcd2 + 4c3d)E

[
X̃9
]

+ (12acd2 + 6b2d2 + 12bc2d+ c4)E
[
X̃8
]

+ (a(12bd2 + 12c2d) + 12b2cd+ 4bc3)E
[
X̃7
]

+ (6a2d2 + a(24bcd+ 4c3)

+ 4b3d+ 6b2c2)E
[
X̃6
]

+ (12a2cd+ a(12b2d+ 12bc2) + 4b3c)E
[
X̃5
]

+ (a2(12bd+ 6c2) + 12ab2c+ b4)E
[
X̃4
]

+ (4a3d+ 12a2bc+ 4ab3)E
[
X̃3
]

+ (4a3c+ 6a2b2)E
[
X̃2
]

+ 4a3bE
[
X̃
]

+ a4

Note that since the matrix transformation Ỹi = L X̃i does not change the first two
moments, we have E[X̃i] = 0 and E[X̃2

i ] = 1. We could thus simplify the above formulas
slightly by assuming that the first two moments are exactly 0 and 1. In our implemen-
tation we have, however, used the formulas in the presented form, computing the actual
moments.

B. Matrix transformation Ỹ = L X̃

We seek an n-dimensional random variable Ỹ with zero means, variances equal to 1,
skewness MOM3, kurtosis MOM4, and a correlation matrix R = LLT , where L is a
lower-triangular matrix. To obtain Ỹ , we start with an n-dimensional random vector X̃
with independent components X̃i. Thereafter, Ỹ is computed as Ỹ = L X̃. Note that
the k’th moment of Ỹ is equal to E

[
Ỹ k
]

because of the zero means.

During the algorithm we use the matrix transformation in two different cases. First it
is used on distributions, which are abstract objects, so we work only with their distribu-
tional properties. In the second part of the algorithm, we transform the outcomes, which
are matrices of numbers. The formulas are the same in both cases, the only difference
is the use of X̃ in the first case and X in the latter.

We use the distribution-notation in the rest of the appendix. The matrix transforma-
tion in a column-wise form is then:

Ỹi =
(
L X̃

)
i

=

n∑
j=1

Lij X̃j =

i∑
j=1

Lij X̃j

where the last equality comes from the fact that L is a lower-triangular matrix and
therefore Lij = 0 for j > i.
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Theorem – properties of Ỹ = L X̃

Assume we have an n-dimensional random variable X̃ with the following properties:

i. E
[
X̃k
]

exists for k = 1 . . . 4

ii. E
[
X̃
]

= 0 and E
[
X̃2
]

= 1

iii. the univariate random variables X̃i, X̃j are independent for i 6= j

Assume further that L is a lower-triangular matrix of size n such that R = LLT , where
R is a correlation matrix, i.e. R is a symmetric positive semi-definite matrix with 1’s on
the main diagonal.

If we then define a random variable Ỹ as Ỹ = L X̃, it has the following properties:

iv. E
[
Ỹ k
]

exists for k = 1 . . . 4

v. E
[
Ỹ
]

= 0 and E
[
Ỹ 2
]

= 1

vi. Ỹ has a correlation matrix R = LLT

vii. E
[
Ỹ 3
i

]
=

i∑
j=1

L3
ij E

[
X̃3

j

]

viii. E
[
Ỹ 4
i

]
− 3 =

i∑
j=1

L4
ij

(
E
[
X̃4

j

]
− 3
)

The proof is straightforward, and is left to the reader.

Consequence

Under the assumptions of the theorem, with an additional assumption that R is regular
(and therefore positive-definite), we can express the moments of X̃ as:

ix. E
[
X̃3

i

]
=

1

L3
ii

E
[
Ỹ 3
i

]
−

i−1∑
j=1

L3
ij E

[
X̃3

j

]

x. E
[
X̃4

i

]
− 3 =

1

L4
ii

E [Ỹ 4
i

]
− 3−

i−1∑
j=1

L4
ij

(
E
[
X̃4

j

]
− 3
)

Note that the set of moments (0, 1, 0, 3) is an invariant of this transformation. This
confirms the known theoretical result that the linear transformations preserve normality.
In the context of our algorithm it means that if we generate normal variables, we can
skip Step 3 of the algorithm.
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