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Stochastic Optimization Models for a Single-Sink
Transportation Problem

Francesca Maggioni∗ Michal Kaut† Luca Bertazzi‡

January 22, 2010

Abstract

In this paper we study a single-sink transportation problem in which the production capacity
of the suppliers and the demand of the single customer are stochastic. Shipments are performed by
capacitated vehicles, which have to be booked in advance, before the realization of the production
capacity and the demand. Once the production capacity and the demand are revealed, there is an
option to cancel some of the booked vehicles against a cancellation fee; if the quantity shipped
from the suppliers using the booked vehicles is not enough to satisfy the demand, the residual
quantity is purchased from an external company. The problem is to determine the number of
vehicles to book in order to minimize the total cost.

We formulate a two-stage and a multistage stochastic mixed integer linear programming mod-
els to solve this problem and test them on a real case provided by Italcementi, the primary Italian
cement producer and the 5th largest cement producer in the world. We test the influence of dif-
ferent scenario-tree structures on the solutions of the problem, as well as sensitivity of the results
with respect to the cancellation fee.

Key Words. Single-sink transportation problem, stochastic programming, scenario tree.

Introduction

In the classical Transportation Problem a set of retailers is served by a set of suppliers. Each retailer
has a deterministic demand, while each producer has a given production capacity. A transportation
cost is charged for each unit of product sent from the suppliers to the retailers. The problem is to
determine the quantity of product to send from each supplier to each retailer in order to minimize
the total transportation cost. A particular case is given by the so called Single-Sink Transportation
Problem, in which a single retailer is served by a set of suppliers. This problem has been deeply
studied, in particular when the total cost is given by the sum of a variable transportation cost and of a
fixed charge cost to use the supplier – see Alidaee and Kochenberger (2005), Herer, Rosenblatt, and
Hefter (1996), Lamar and Wallace (1997), Lamar, Sheffi, and Powell (1990) and Palekar, Karwan, and
Zionts (1990). The reason is that this problem, referred to as Single-Sink Fixed-Charge Transportation
Problem, has several applications in logistics, including for instance the supplier selection problem
and the fleet selection problem.
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Bergamo 24127, Italy.
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The transportation problem we study has been inspired by a real case of clinker replenishment,
provided by the largest Italian cement producer located in Sicily, the large island adjacent to the south-
ern tip of Italy. Clinker is a semi-worked material which is ground for use in cement and then sold to
final customers. The logistic system we study is organized as follows (see Figure 1): the clinker is pro-
duced by production plants located both in Sicily and in Calabria, the neighbouring region of mainland
Italy. The four production plants considered in the model are Isola delle Femmine (Palermo, Sicily),
Porto Empedocle (Agrigento, Sicily), Castrovillari (Cosenza, Calabria) and Vibo Valentia (Calabria).
The warehouse is located in Catania, Sicily. Since the transportation from Calabria requires a ferry-
boat, in addition to trucks, the corresponding transportation costs are higher than those from inside
Sicily. The production capacity of the four production plants, as well as the demand for clinker at
Catania, is considered stochastic.

Figure 1: Sicily and Calabria.

All the vehicles are leased from an external transportation company, which we assume to have an
unlimited fleet. The vehicles must be booked in advance, before the demand and production capacity
are revealed. Only full load shipments are allowed. When the demand and the production capacity
become known, there is an option to cancel some of the reservations against a cancellation fee. If
the quantity delivered from the four suppliers using the booked vehicles is not enough to satisfy the
demand in Catania, the residual quantity is purchased from an external company at a higher price.
The problem is to determine, for each supplier, the number of vehicles to book in order to minimize
the total cost, given by the sum of the transportation cost (including the cancellation fee for vehicles
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booked but not used) and the cost of the product purchased from the external company.
This problem can be seen as a stochastic single-sink transportation problem. The stochastic pa-

rameters are the demand and the production capacity of the production plants. A simple solution to
this problem could be obtained by solving the so called Expected value problem or Mean value prob-
lem, that is the corresponding deterministic problem in which the stochastic parameters are replaced
by the their mean value. We propose two stochastic mixed integer linear programming models for the
solution to this problem. We start with a two-stage stochastic programming model with recourse, see
for instance Birge and Louveaux (1997), Kall and Wallace (1994); the drawback of this model is rep-
resented by the so-called end-of-horizon effects, characterized by the fact that warehouse is typically
empty at the end of the second stage. To mitigate the problem, we propose a multistage stochastic
model—see again Birge and Louveaux (1997) or Kall and Wallace (1994) for more details.

These two models allow us to solve the real case and to carry out computational experiments in
order to answer the following questions: how bad is the solution obtained by solving the corresponding
deterministic problem? How many extra periods do we need to mitigate the end-of-horizon effects?
Does the model benefit from having a scenario tree with more than one stage with branching? How
does the optimal solution vary by modifying the cancellation fee?

The rest of the paper is organized as follow. In Section 1 we formally describe the problem. In
Section 2 we formulate the corresponding two-stage and multistage stochastic mixed integer linear
programming models. In Section 3 we present computational results and answer the above questions.

1 Problem description

A set I = {i : i = 1, . . . , I} of suppliers has to satisfy the demand of a single customer. The initial
inventory level at the customer is l0, the storage capacity at the customer is lmax and the unloading
capacity at the customer is g. Each supplier i is characterised by its production cost ci and transporta-
tion cost ti. The price for buying the clinker from an external source is denoted b and we assume
b > maxi(ci + ti). A set S = {s : s = 1, . . . , S} of possible scenarios is available. Each scenario
s ∈ S is described by its probability ps, the demand ds of the customer and the production capacity asi
of each supplier i ∈ I. We assume a uniform fleet of vehicles with capacity q and allow only full-load
shipments. The cancellation fee is given as a proportion α, 0 ≤ α ≤ 1, of the transportation costs ti,
so the transportation cost of each vehicle from the supplier i is qti if the vehicle is booked and then
used, or αqti if the vehicle is booked, but later cancelled.

The problem is to determine the number of vehicles Xi ∈ N to book for transport from each sup-
plier i ∈ I before the demand and the production capacity are revealed (first stage decision variables),
the number of vehicles Zs

i ∈ N actually used in scenario s ∈ S (second stage variables) and, finally,
the quantity Y s, Y s ≥ 0, of product to purchase from an external source in scenario s ∈ S (second
stage variable). The aim is to minimize the total cost, given by the sum of the transportation cost (in-
cluding the cancellation fee for vehicles booked, but not used) and the cost of the product purchased
from the external source.

2 Model formulation

2.1 The two-stage stochastic model

In the two-stage (one-period) case, we get the classical stochastic programming model with recourse:
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min q

I∑
i=1

tiXi +

S∑
s=1

ps
[
b Y s − (1− α)q

I∑
i=1

ti (Xi − Zs
i )
]

(1)

subject to

q
I∑

i=1

Xi ≤ g (2)

l0 +

I∑
i=1

qZs
i + Y s − ds ≥ 0 , ∀ s ∈ S (3)

l0 +

I∑
i=1

qZs
i + Y s − ds ≤ lmax , ∀ s ∈ S (4)

Zs
i ≤ Xi , ∀ i ∈ I,∀ s ∈ S (5)

qZs
i ≤ asi , ∀ i ∈ I,∀ s ∈ S (6)

Xi ∈ N , ∀ i ∈ I (7)

Y s ≥ 0 , ∀ s ∈ S (8)

Zs
i ∈ N , ∀ i ∈ I,∀ s ∈ S . (9)

The first sum in the objective function (1) is the booking cost of the vehicles, while the second
sum represents the recourse action, consisting of buying extra clinker (Y s) and cancelling unwanted
vehicles. Note that cancelling a vehicle results in a negative cost, since we get back the price paid in
stage one, minus the cancellation fee. As a result, it is possible to have negative second-stage costs.
Constraint (2) guarantees that the total quantity delivered from the suppliers to the customer is not
greater than the customer’s unloading capacity g, inducing thus an upper bound on the total number
of vehicles. Constraints (3) and (4) ensure that the second-stage storage level is between zero and
lmax. Constraint (5) guarantees that the number of vehicles servicing supplier i is at most equal to
the number booked advanced and (6) controls that the quantity of clinker delivered from supplier i
does not exceed its production capacity asi . Finally, (7)–(9) define the first- and second-stage decision
variables of the problem.

The drawback of the two-stage stochastic model is that it can be expected to exhibit a strong end-
of-horizon effect in the form of an empty warehouse at the end of the second stage. This is due to the
fact that we do not assign any value to clinker in the storage and, at the same time, it is possible to
cancel vehicles that are not needed to satisfy the demand.

2.2 The multistage stochastic model

We now formulate a multistage stochastic model. The aim of the model is the same, that is to deter-
mine, for each supplier, the number of vehicles to book in order to minimize the total cost.

The major difference between two-stage and multistage models is that in the latter, we have to
model the structure of the underlying scenario tree, see for example Dupačová (1997), Dupačová,
Consigli, and Wallace (2000). This can be done in two ways: we can either model the problem by
scenarios and then add a set of so-called non-anticipativity constraints, or write the model in terms of
nodes of the scenario tree and describe the tree structure by giving to each node (except the root of the
tree) a pointer to its parent, i.e. the node immediately preceding it. We use the latter formulation and
need thus the following notation, in addition to the one introduced in Section 1:
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• N = {n : n = 0, . . . , N} is the ordered set of nodes of the scenario tree structure;

• 0 ∈ N is the root of the tree, which represents the time instant for which we want to determine
the number of vehicles to book;

• F = {n : n = N − F + 1, . . . , N} ⊂ N is the set of the leaves of the tree, that is the nodes in
the last stage of the model; since the number of scenarios S is equal to the number of leaves,
we get S = F = |F|;

• pa(n) denotes the parent of the node n ∈ N \ {0} in the scenario tree;

• pn is the probability of node n ∈ N ; we have considered the leaves (and therefore the scenarios)
to be equiprobable, so that

pn =


1

|F|
if n ∈ F∑

m∈N\{0}
pa(m)=n

pm if n ∈ N \ F ; (10)

• Parameters ani and dn correspond to asi and ds from the previous section; they are both defined
at nodes n ∈ N \ {0};

• Variable Xn
i ∈ N, defined at n ∈ N \ F , corresponds to Xs

i from the previous section;

• Variables Y n and Zn
i correspond to Y s and Zs

i and are thus defined on n ∈ N \ {0};

• Ln is a new variable representing the inventory level of the customer at node n:

Ln = Lpa(n) + q
I∑

i=1

Zn
i + Y n − dn , ∀n ∈ N \ {0} ; (11)

The multistage model can be then formulated as follows:

min
N−F∑
n=0

pn
[
q

I∑
i=1

tiX
n
i

]
+

N∑
n=1

pn
[
b Y n − (1− α)q

I∑
i=1

ti

(
X

pa(n)
i − Zn

i

)]
(12)
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subject to

q

I∑
i=1

Xn
i ≤ g , ∀n ∈ N \ F (13)

Lpa(n) + q

I∑
i=1

Zn
i + Y n − dn ≥ 0 , ∀n ∈ N \ {0} (14)

Lpa(n) + q
I∑

i=1

Zn
i + Y n − dn ≤ lmax , ∀n ∈ N \ {0} (15)

Zn
i ≤ X

pa(n)
i , ∀ i ∈ I, ∀n ∈ N \ {0} (16)

qZn
i ≤ ani , ∀ i ∈ I, ∀n ∈ N \ {0} (17)

Xn
i ∈ N , ∀ i ∈ I, ∀n ∈ N \ F (18)

Y n ≥ 0 , ∀n ∈ N \ {0} (19)

Zn
i ∈ N , ∀ i ∈ I,∀n ∈ N \ {0} , (20)

where (12)–(20) correspond one-to-one to (1)–(9) in Section 2.1. Even if there is no time explicitly in
the model, we will need to refer to it later in the paper. For this purpose, we denote by T the number
of stages in the model and introduce a time index t = 1 . . . , T , with t = 1 corresponding to the root
of the scenario tree.

Note that the two-stage model presented in the previous section is a special case of the above
multistage model. The reason we present both formulations is that the two-stage model may be easier
to understand, especially for readers not used to the node-based formulation of a stochastic program.

3 Numerical results

In this section, we present numerical results from the case described in Introduction, based on his-
torical data from period January 2003 to May 2007 presented in Tables 1–3: Table 1 presents the
production and transportation costs for each supplier, together with its distance from the customer in
Catania; Table 2 shows the historical monthly data of demand for clinker in the area of Catania and,
finally, Table 3 reports the monthly production capacity of each supplier in the considered period.

Table 1: Production costs ci, transportation costs ti, distance and travel time from Catania.

Supplier ci (e/t) ti (e/t) Dist. (km) Time (h)
Porto Empedocle (AG) 18.79 11.40 180 3

Castrovillari (CS) 9.55 33.00 356 7
Isola d. Femmine (PA) 11.00 14.10 225 3

Vibo Valentia (VV) 11.54 18.50 181 4

In our computational experiment, we have used vehicle capacity q = 30 tonnes (t), the storage
capacity lmax = 35 kilotonnes (kt) and the daily unloading capacity of 1800 t, giving us the monthly
unloading capacity g = 21 × 1800 t = 37.8 kt, or 1260 full vehicles. The cost of clinker from an
external source was set to b =e 45/t and the cancellation fee to α = 0.5. For the initial inventory
level l0 at the customer, we have taken the value at the beginning of January 2007, that is l0 = 2000 t,
even if we are aware that it is quite small.
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Table 2: Monthly demand d of Catania in the period from January 2003 to May 2007, measured in
kilotonnes.

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2003 20.0 23.3 23.7 24.7 24.4 20.4 24.3 22.1 19.6 26.9 26.4 22.1
2004 24.7 24.5 30.8 24.7 29.9 21.2 23.8 21.0 18.1 28.8 23.1 24.0
2005 24.4 23.8 27.7 28.6 37.4 29.9 29.7 15.4 20.1 25.4 22.9 23.6
2006 22.8 24.6 28.9 23.6 30.9 25.4 29.6 23.3 25.3 34.4 25.7 25.4
2007 25.0 29.0 26.0 23.0 28.0

Our aim is to find, for each supplier, the number of vehicles to book at the beginning of January.
Because of the limited number of data at our disposal, we cannot describe the stochastic parameters
by a particular probability distribution; instead, we have constructed scenarios by using the historical
data directly, using all the values for December, January and February as future scenarios for the
January demand and production capacity. In this way, we get fourteen scenarios in the second stage
of the scenario tree.

The problem was modelled in AMPL and solved using the CPLEX solver. Since we had to use
very small scenario trees, the solution time is negligible even if the problem is a stochastic mixed
integer program.

In the rest of this section, we present several tests, the goal of which can be summarized as follows:

• Test the importance of the number of proper stages, that is stages with branching, on the quality
of the first stage solution;

• Test, for each type of tree, how many extra-periods, that is stages without branching, we need
to add to mitigate the end-of-horizon effects.

3.1 Effect of extra periods on a model with one proper stage

First, we test the model with scenario trees T1–T3, presented in Figures 2–4. All the trees are charac-
terized by a branching of fourteen descendants from the root and a unique descendant on all the other
nodes, such that S = |F| = 14. The aim of the test is to determine how many extra-periods we need
to add to the scenario tree T1 to overcome the end-of-horizon effects.

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14Jan

Figure 2: Scenario tree T1.

The results are reported in Table 4, where the last two columns show the cost incurred in the root
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Table 3: Monthly production capacity ai of the suppliers i ∈ I in the period from January 2003 to
May 2007, measured in kilotonnes. The zero entries represent production site closures due
to equipment failure and/or maintenance.

i Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
’03 9.1 4.0 11.1 14.6 21.7 14.2 17.4 8.4 24.9 17.4 12.3 13.0
’04 0.0 4.1 9.0 10.5 9.3 12.2 11.6 13.6 9.4 11.0 9.7 0.0

AG ’05 0.0 9.1 8.3 21.1 15.0 15.1 12.1 13.2 11.3 13.0 7.1 1.2
’06 1.7 9.5 4.5 14.0 12.5 15.2 11.3 15.9 6.2 11.9 7.2 9.0
’07 13.0 13.0 19.0 4.0 10.0
’03 10.9 14.0 13.9 19.1 14.1 13.0 4.5 0.0 4.0 13.7 9.1 4.5
’04 8.3 6.3 3.0 0.0 16.2 14.2 12.3 14.4 19.8 19.3 20.0 15.2

CS ’05 15.1 10.8 21.9 19.7 15.3 10.8 6.3 0.0 9.1 23.2 11.7 0.9
’06 18.7 0.0 8.9 16.0 17.6 13.9 4.8 5.0 14.1 24.3 14.5 8.1
’07 17.0 8.0 0.0 0.0 10.0
’03 15.5 18.1 23.3 12.4 0.5 5.7 12.5 13.5 12.3 10.2 8.3 12.0
’04 27.1 10.0 12.8 13.8 13.7 14.0 10.6 1.4 10.3 12.6 11.5 16.9

PA ’05 16.0 3.8 10.6 16.6 23.0 27.7 16.7 13.4 16.8 11.1 19.0 22.4
’06 27.5 21.5 18.6 20.4 0.0 14.0 14.3 11.2 18.4 16.9 9.4 11.1
’07 11.0 9.0 7.0 6.0 10.0
’03 4.9 1.2 12.7 2.7 19.3 11.9 5.4 3.0 14.6 3.4 15.2 2.5
’04 4.0 9.4 18.3 10.5 13.9 8.6 6.2 4.3 7.2 12.4 9.5 0.0

VV ’05 3.5 21.1 20.8 13.0 23.5 19.1 8.2 8.6 4.6 9.2 16.2 16.0
’06 8.5 22.3 21.7 15.1 7.4 10.3 0.0 2.5 4.3 5.2 18.3 6.3
’07 0.0 0.0 0.0 0.0 10.0

and in the first two stages, that is

root: q

4∑
i=1

tiX
0
i (21)

stages 1+2: q

4∑
i=1

tiX
0
i +

14∑
n=1

pn
[
b Y n − (1− α)q

4∑
i=1

ti
(
X0

i − Zn
i

)]
. (22)

Table 4: Solution to the tests from Section 3.1. For each scenario tree considered, the table shows
the number of scenarios S and stages T , the optimal number of booked vehiclesXi for each
supplier i ∈ I, and the optimal costs in the root and in the first two stages, respectively.

tree S T AG CS PA VV cost 1 (e) cost 1+2 (e)
T1 14 2 400 0 563 117 439 884 438 304
T2 14 3 433 0 563 133 460 050 459 350
T3 14 7 433 0 563 133 460 050 459 446

We see that using the simplest scenario tree T1 leads to significantly fewer booked vehicles,
demonstrating nicely the end-of-horizon problem. Since there is no difference between the first-stage
solutions from trees T2 and T3, we can conclude that adding just one extra period is enough to mitigate
the end-of-horizon effect and achieve stability of the first-stage solution. Note, however, that this is
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28

Jan

Feb

Figure 3: Scenario tree T2.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
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57 58 59 60 61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80 81 82 83 84

Jan

Feb

Mar

Apr

May

Jun

Figure 4: Scenario tree T3.

not true for the second-stage solution, which is slightly cheaper in tree T2 than in T3; the reason is that
in T2 the second period is the last one, so we again get the end-of-horizon effect of empty warehouse
at the end of the period.

Note also that, for all the three trees, the cost of the first and second stage is actually smaller than
the cost of the first stage only. This is due to the fact that the costs of buying extra clinker is smaller
than the repayment we get for cancelling orders for some of the vehicles – see (22).

3.2 Deterministic solutions and the value of stochastic solution

To check the importance of modelling the randomness of the parameters, we compare the optimal
solutions and objective values of the stochastic models with those obtained from the corresponding
deterministic models, where the stochastic parameters (represented by the demand dn and the produc-
tion capacity ani , i ∈ I, n ∈ N \ {0}) are replaced by their mean values, computed over all the nodes
at the same time period. In literature, this kind of problem is called Expected value problem or Mean
value problem, (see Birge and Louveaux (1997) and Kall and Wallace (1994)).

In a deterministic problem the future is completely known, so the model will always book the
exact numbers of vehicles needed for the next period. In other words, we get Zn

i = X
pa(n)
i for all

n ∈ N \ F . Furthermore, as long as we have enough transportation capacity, the model will never
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purchase extra clinker, i.e. Y n = 0 at all n ∈ N \ F .
Solutions to the deterministic models with two, three and four stages are reported in Table 5.

As expected, the model simply sorts the suppliers according to the transportation costs and books a
full production capacity from the cheapest one (AG), following by the next-cheapest (PA). Just as in
the stochastic version, the one-period model orders less than the multi-period versions, though the
difference is much smaller than in the stochastic case.

Table 5: Solution to the tests from Section 3.2. Optimal solutions of the deterministic models with
varying number of stages T . For each T , the table shows the optimal number of booked
vehicles Xi for each supplier i ∈ I and the optimal costs in the root and in the first two
stages, respectively.

T AG CS PA VV cost 1 (e) costs 1+2 (e)
2 206 0 530 0 294 642 294 898
3 206 0 533 0 295 911 295 911
4 206 0 533 0 295 911 295 911

Let’s now focus on the two-stage case. We see that the deterministic model books much fewer
vehicles than the stochastic one, resulting in a first-stage solution that is only two-thirds the cost of the
stochastic counterpart. However, we have to remember that this is an in-sample objective value (using
the terminology from Kaut and Wallace (2007)) and the true cost of the solution—or the out-of-sample
objective value—is likely to be higher. To see how much, we can solve the stochastic model with tree
T1 and the first-stage variables (X0

i ) fixed to the deterministic solution. This results in a total cost of
e 495 788, much higher than the predicted (in-sample) cost of e 294 898. Furthermore, we see that
the resulting total cost is significantly higher than the optimal solution for tree T1. The difference is
known as the Value of stochastic solution (VSS), see e.g. Birge and Louveaux (1997). In our case, it
is

VSS = obj. val.(deterministic sol. on T1)− obj. val.(optimal sol. of T1)
= 495 788− 438 304 = 57 384 .

(23)

This shows that one can save about 12% of the cost by using even the simplest stochastic model,
compared to the deterministic model—all this provided that T1 is a true representation of reality.
While this is certainly not the case, T1 is still a better approximation than the deterministic model. In
the next section, we improve the approximation further by adding one more proper stage.

3.3 One versus two proper stages

In this section, we test the effect of one extra proper stage (i.e. stage with branching) on the quality
of the first-stage solution. For this purpose, we consider the scenario tree T4 from Figure 5. This is a
three stage tree with 14 branches from the root and 5 from each of the second-stage nodes, resulting
in S = 14× 5 = 70 scenarios and |N | = 85 nodes. The first two stages are equal to trees T1–T3.

To compare this tree with T2 (which has the same number of periods), we need to ensure that the
smaller tree is an ubiased approximation of T4. To do this, we set the last-stage values of ani and dn

in the smaller tree equal to the expected value of the five corresponding last-stage values from T4. We
denote the resulting tree by T ev

2 .
The results for the two scenario trees are presented in Table 6. Analogously to the previous tests,

we see that a better description of stochasticity leads to larger bookings in the first stage. Actually,
in the case of tree T4 the total number of booked vehicles is equal to 1260, that is the customer’s
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Figure 5: Scenario tree T4.

unloading capacity. This is due to the fact that we use a rather low initial inventory level I0 = 2000,
this being the actual case from January 2007.

Table 6: Solution to the in-sample test in Section 3.3. For both scenario trees, the table shows the
number of scenarios S and stages T , the optimal number of booked vehicles Xi for each
supplier i ∈ I, and the optimal costs in the root and in the first two stages, respectively.

tree S T AG CS PA VV cost 1 (e) costs 1+2 (e)
T ev
2 14 3 400 0 563 133 448 764 455 744
T4 70 3 426 21 603 210 538 101 494 894

Just as in the previous section, we have to remember that the values presented in Table 6 represent
in-sample values, so the costs are not directly comparable. To be able to estimate the effect of using
a better scenario tree, we have to compare the out-of-sample costs. For this purpose, we declare T4 to
be the true representation of the real world and use it as a benchmark to evaluate the cost of optimal
solutions obtained using other trees. The solutions are evaluated on a rolling-horizon basis, that is we
start by rooting each of the tested trees at node 0 of tree T4, solve the model, fix the first-stage solution
and then repeat the procedure with trees rooted at the second-stage nodes 1–14 of tree T4.

Now, since the model does not have any constraints that would “cut across” the scenarios, solving
the model on tree T4 with all the root variables fixed is equivalent to solving fourteen two-stage
models, conditional on the fixed values at node 0. This simplifies the testing, as we can solve all the
trees rooted at nodes 1–14 at once, by solving the model on tree T4. The details of the procedure are
provided separately for every scenario-tree structure tested:

T ev
2 tree This can be tested exactly in the way described above, that is

1. Solve the model on the T ev
2 tree and store values of the first-stage (root) variables X0

i .
2. Solve the model on tree T4, with X0

i fixed to the stored values.

Note however, that this test actually simulates a situation where we use only a one-period model
at t = 2, so it can be expected to underestimate the true quality of the tree. This is, however, an
unavoidable consequence of having T4 as a benchmark tree.

T1 tree This case is analogous to the previous one, this time without any problems at t = 2.

1. Solve the model on the T1 tree and store values of the first-stage (root) variables X0
i .

2. Solve the model on tree T4, with X0
i fixed to the stored values.
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deterministic This case differs from the previous one in that we can not use tree T4 in Step 2 above,
as this would simulate a situation where we use a deterministic model in at t = 1, but a stochas-
tic (one-period) model at t = 2 and therefore overestimate the quality of the deterministic
approach. Instead, we have to use the T ev

2 tree at t = 2, since it has a deterministic second
period:

1. Solve the deterministic model and store the solution X0
i .

2. Solve the model on tree T ev
2 , withX0

i fixed to the stored values. Store all the second-stage
variables.

3. Finally, solve the model on tree T4, with all the first- and second-stage variables fixed to
the stored values.

Results of the tests are presented in Table 7. We see that if T4 was the correct representation of
the world, there would be significant advantage to using a even the simplest one-period stochastic-
programming approach, instead of solving the deterministic problem on the rolling-horizon basis.
Furthermore, having two proper stages (T4) is better than having only one (T2 and T ev

2 ), though the
difference is much smaller. In addition, we observe that there is a very little difference between
performance of the solutions from T1 and T ev

2 , most likely due to the fact that the end-of-horizon
issues of the former are mitigated by using it in a rolling-horizon fashion.

Table 7: Solution to the out-of-sample test in Section 3.3. The table shows the cost in the first two
stages plus the total cost for solutions computed using four different tree structures, all
evaluated on tree T4.

Solution from cost 1+2 (e) obj. value (e)
deterministic 469 110 1 012 065.0

tree T1 458 602 907 827.0
tree T ev

2 460 951 905 505.0
tree T4 494 894 900 883.5

3.4 Effect of extra periods on a model with two proper stages

This test is analogous to the one presented in Section 3.1, except that we consider models with two
proper stages. Again, we want to determine how many extra-periods we have to add to the scenario
tree T4 to mitigate the end-of-horizon effects. For this, we introduce two extra scenario-tree structures
T5 (see Figure 6) and T6, obtained by adding respectively one and two extra-periods to T4.

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14Jan

Feb

Mar

Figure 6: Scenario tree T5.
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The results of the tests are reported in Table 8. Just as in Section 3.1, we can see that the first-stage
solution X0

i stabilizes just by adding one extra-period to the scenario tree T4. And just as before, the
difference between the stable solution and the solution from tree T4 is that the former has slightly
more expensive first-stage solution—even though this time the number of vehicles does not change,
since it was on its upper bound already in the case of tree T4. (However, additional tests with higher
value of the initial inventory level l0 show that tree T5 indeed leads to more booked vehicles in the
cases where tree T4 produces orders below the upper bound.) We may also notice that even thought
the trees T5 and T6 lead to equal first-stage solution, the latter has a more expensive second-stage
solution. This is caused by a very minor end-of-horizon effect in the model with tree T5, an effect
analogous to what we observed in Section 3.1.

Table 8: Solution to the test in Section 3.4. For each scenario tree considered, the table shows
the number of scenarios S and stages T , the optimal number of booked vehicles Xi for
each supplier i ∈ I, and the optimal costs in the root, the first two and first three stages,
respectively.

tree S T AG CS PA VV cost 1 (e) costs 1+2 (e) cost 1+2+3 (e)
T4 70 3 426 21 603 210 538 101 494 894 900 883
T5 70 4 417 30 603 210 543 933 498 782 934 058
T6 70 5 417 30 603 210 543 933 498 853 936 115

3.5 Sensitivity with respect to parameter α

In this section, we investigate the sensitivity of the optimal solution to the cancellation fee α ∈ [0, 1],
for two different scenario tree structures. We start with results of the sensitivity analysis on the two-
stage model with scenario tree T1, presented in Table 9.

Table 9: Sensitivity analysis with respect to α, tested on scenario tree T1. For each value of α, the
table presents the optimal number of booked vehicles for each supplier i ∈ I, the total
number of booked vehicles and the optimal objective value, i.e. the minimal cost.

α AG CS PA VV total obj. val.
0.0 401 60 563 236 1260 334 541
0.2 416 33 563 248 1260 384 550
0.4 400 0 563 117 1080 422 096
0.6 303 0 563 116 979 451 662
0.8 303 0 537 110 950 476 524
1.0 300 0 533 110 943 500 484

We see that the optimal number of ordered vehicles decreases withα, while the total cost increases.
While this might looked counter-intuitive, it is a natural consequence of the way we model the booking
and cancellation process: when the cancellation fee α is low, we can book vehicles that we are going
to need only in some of the scenarios, as long as the expected price of buying extra clinker is higher
than the expected cancellation fees. Alternatively, we can rewrite the objective function (1) as

min α q
I∑

i=1

tiXi +
S∑

s=1

ps
[
b Y s + (1− α)q

I∑
i=1

tiZ
s
i

]
, (1’)
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which suggests a different (but equivalent) interpretation of the model: we pay the cancellation fee
upfront and then pay the rest of the price for the vehicles we actually use. From this formulation it is
easy to see why small values of α should lead to bigger values of Xi’s.

Let us for a moment consider the extreme case of α = 0, i.e. zero cancellation fees. From (1’),
we immediately see that the objective function in this case becomes

min
S∑

s=1

ps
[
b Y s + q

I∑
i=1

tiZ
s
i

]
,

that is the first stage completely disappears from the model. In other words, there are no longer any
decisions done under uncertainty (in the first stage). It follows that the case α = 0 is equivalent
to the so-called wait-and-see (WS) solution corresponding to models with α ∈ [0, 1], see Birge and
Louveaux (1997) or Kall and Wallace (1994) for more information. This in turn allows us to compute
the expected value of perfect information (EVPI), given by the difference between the objective values
of the stochastic and wait-and-see solutions. In the case of α = 0.5, used in all the previous tests, we
get

EVPI = obj. val.(T1)− obj. val.(WS)

= 438 404− 334 541 = 103 763 .

This means that we should be willing to pay as much as a hundred thousand euro for the possibility to
postpone the orders til after we have observed the actual demand and production level. Note that this
is almost a quarter of the total costs, suggesting that the company could save significant amounts if it
could postpone the orders, or at least improve its estimates of the stochastic parameters.

To check whether the above results hold also in the multiperiod case, we have repeated the tests
for scenario tree T5. As we can see from Table 10, the pattern is the same as above, that is the objective
value increases with α, while the number of vehicles booked in the first stage decreases. However,
the case of zero cancellation costs no longer corresponds to the wait-and-see solution, as zero cancel-
lation costs allow postponing the decision one period, while the WS model implies postponing all the
decisions to the last stage of the model.

Table 10: Sensitivity analysis with respect to α, tested on scenario tree T5. For each value of α, the
table presents the optimal number of booked vehicles for each supplier i ∈ I, the total
number of booked vehicles, the cost in the first two stages and the optimal objective value,
i.e. the total cost.

α AG CS PA VV total cost 1+2 obj. val.
0.0 425 33 592 210 1260 389 186 1 102 282
0.2 433 0 603 224 1260 435 228 1 174 898
0.4 426 21 603 210 1260 476 651 1 240 520
0.6 372 30 630 210 1242 510 520 1 303 512
0.8 316 33 563 163 1075 513 426 1 356 732
1.0 303 33 563 133 1032 525 885 1 397 606

4 Conclusions

We have proposed a two-stage and a multistage stochastic models for the stochastic single-sink trans-
portation problem and tested it on data provided by the biggest Italian cement producer. Our tests
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show that for trees with one or two proper stages, it is enough to add one extra-period to mitigate the
undesirable end-of-horizon effects. Furthermore, we have showed the advantage of using a stochastic
model, compared to a deterministic one, as well as the additional advantage of having a model with
more than one proper stage. Finally, a sensitivity analysis of the optimal solutions to value of can-
cellation fee revealed the importance of this parameter; In addition, the tests allowed us to compute
the expected value of perfect information (EVPI) and thus show that a good estimate of the stochastic
parameters could lead to significant savings for the company.
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