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In this chapter, we present a new model for optimal strategic and tacti-
cal planning of the bioenergy supply chain under uncertainty. We discuss
specific challenges, characteristics and issues related to this type of model.
The technological details, variability in supply and demand, and uncertainty
in virtually all aspects of the supply chain require advanced modeling tech-
niques. Our model provides a broad modeling approach that addresses the
entire supply chain using an integrated perspective.
The broad applicability of the approach is illustrated by the two cases dis-
cussed at the end of the chapter. The first case presents a forest to bioen-
ergy supply chain in a region of the Norwegian west coast. The second case
presents the miscanthus supply chain to a transformation plant in Burgundy,
France and takes into consideration uncertain final demand.

1 Introduction

Renewable energy is the fastest-growing source of energy generation, according to the
IEO2013 Reference case (U.S. Energy Information Agency, 2013). Total power generation
from renewables is projected to increase by 2.8% annually until 2040. Although about
80% of the total increase is in hydroelectric and wind power, bioenergy generation is
expected to grow at about the same pace. The growth of non-hydro renewable energy
sources in OECD Europe is stimulated by renewable energy policies. The EU mandates
that 20% of total energy production must come from renewables by 2020 (according to the
20-20-20 target); this is up from about 13% in 2010. In addition to the EU targets, several
countries provide incentives that promote the expansion of renewable energy generation.
For example, Germany, Spain, Denmark, and the United Kingdom have enacted feed-in
tariffs that guarantee minimum prices for energy generated from renewable sources.
The market for bioenergy plants is expected to grow quickly in the coming years

(ecoprog GmbH, 2013). In 2020, 3500 bioenergy plants are expected to be operational
worldwide, implying a growth of installed capacity by about 46% in an eight-year period.
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A beneficial characteristic of biomass is that it can be stored, in contrast with solar
or wind-based generation, which means that bioenergy generation can more easily be
matched with varying demand. Unfortunately, biomass often requires large production
and collection areas, has low energy density, is expensive to harvest and transport, and
has high maintenance and logistics costs. This makes it challenging for the bioenergy
industry to compete with the highly developed fossil-fuel value chains (De Meyer, Dirk,
Rasinmäki, and Van Orshoven, 2014). Also, biomass quality can be affected by transport
and storage. Although passive drying reduces the moisture content, which is a favorable
outcome, storage can also induce fiber deterioration, which reduces the energy content
(Wolfsmayr and Rauch, 2014). Furthermore, bioenergy supply chains have to deal with
the geographical spread of supply sources and weather and season induced supply vari-
ations. In addition, the supply chain is challenged by complex logistics and inventory
management aspects, as well as variety of uncertain factors.

Almost every step in the supply chain may have uncertainty factors. Some uncer-
tainties are inherited from the biomass supply part, others from the energy generation
and demand parts. Weather conditions and technical disruptions affect harvesting time
windows as well as biomass yield and quality. Transportation and logistic uncertainties
involve fleet availability, storage and road conditions, all of which induce unpredictable
supply. Technological innovation and government policies and incentives greatly affect
the competitiveness of investments and operations.

Researchers have looked at biomass-bioenergy markets in settings varying from a single
feedstock and a single consumer to integrated settings in the local economy or other en-
ergy markets. Despite all of the challenges and uncertain factors, we are aware of only two
multi-stage stochastic optimization models which aim to cover the entire supply chain.
Cundiff, Dias, and Sherali (1997) develop a multi-stage linear program that considered
the impact of weather conditions during the growth season and harvesting period. They
include four scenarios, which take into consideration good and bad weather in each pe-
riod. They considered one type of biomass and allowed storage capacity expansions with
fixed locations, but no discrete investment decisions about new capacities or locations
were allowed. Walther, Schatka, and Spengler (2012) present a strategic stochastic op-
timization model for investments related to production networks for synthetic bio-diesel
in North-west Germany. Neither of these models include active drying, or the terminal
concept which we include in the model presented in this chapter.
Van Tilburg, Egging, and Londo (2006) present the BIOTRANS model, a general

model for the biomass to biofuel supply chain. This model is deterministic, has a cost-
minimization focus, and does not consider seasonality, storage, or biomass quality varia-
tions, although yields are location specific.
Various papers discuss challenges and recommended future research directions. Sharma,

Ingalls, Jones, and Khanchi (2013) indicate that the combined complexity and uncer-
tainty plus non-financial objectives require advanced multi-objective approaches. Yue,
You, and Snyder (2014) note that models covering uncertainty in biomass quality as well
as energy prices and correlation between uncertain parameters are not handled by any
known optimization model.
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To a large extent the modeling approaches reported in the literature are inspired by a
specific case, resulting in many specialized optimization models for certain parts of the
value chain or for specific value chains. Various papers argue for a holistic, integrated
approach (e.g., De Meyer et al. (2014), Mafakheri and Nasiri (2013), Shabani, Akhtari,
and Sowlati (2013), and Wolfsmayr and Rauch (2014)), taking into account interrelation-
ships, interdependences, and coordination needs between all stakeholders in the supply
chain, rather than a single agent.
For more details on the bioenergy supply chain, refer to De Meyer et al. (2014),

Mafakheri and Nasiri (2013), Scott, Ho, and Dey (2012), Shabani et al. (2013), Sharma
et al. (2013), Wolfsmayr and Rauch (2014), and Yue et al. (2014).

Considering the list of challenges and lack of generalized stochastic models in the
literature, we have developed a general framework for optimizing the value chain for
bioenergy production under uncertainty. This generic stochastic bioenergy optimization
model can be used in many types of analysis, independent of technologies considered,
types of biomass used, the user operating in a specific part of the value chain, or the
geographical region. Our model is flexible in taking a strategic and/or tactical planning
perspective, and considers uncertainty in virtually all aspects relevant to the biomass
bioenergy supply chain (although in this chapter we do not cover the model extensions
needed to handle mandatory crop rotation and perennial crops). Through an adequate
composition of the stochastic scenario tree, even correlations between uncertain param-
eters could be captured. We illustrate the broad applicability of our approach with two
case studies that are entirely different in nature; these studies are presented at the end
of the chapter.
The rest of the chapter is organized as follows: in the next section (Section 2), we

present the core model, i.e. the minimal set of constraints needed for a functional de-
terministic model. Since uncertainty is such an important characteristic, Section 3 deals
with reformulation of the model into a stochastic one. In Section 4, we extend the core
model with additional features. Finally, in Section 5, we present two test cases, one
dealing with forest biomass in Norway and the other with miscanthus in France.

2 The core model

The model is based on a network representation of the value chain from production
to consumption. The nodes of the network represent activities and processes that the
products can undergo. Currently, the model has nodes for production, transformation,
storage, and consumption. Arcs between the nodes are used to model flow of commodities
or equipment between nodes.
This structure means that the model naturally decomposes into several parts: one for

each node type and one for the flows between them. The actual network structure is
then provided by data, while the model itself is case-independent. The result is a flexible
model, capable of handling complex supply chains, such as the one shown in Figure 1.
There, we can see that ‘chipping’ and ‘pelletizing’ are representing by the same node
type, ‘transformation’. This means that both the input and output products have to be
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Figure 1: Structure of a stylized forest-biomass value chain.

specified as data. We could save the amount of required data by having separate node
types for the two processes, but that would increase the model complexity dramatically;
not only would we have to model more node types, but we would also have to model
more possible links between them.

2.1 Notation

2.1.1 Indices, sets, and subsets

The model supports the flow of multiple products and their transformation to other
products. Each actual product is specified by its product type (referred to simply as
‘product’) and by the crop that it is made from. Hence, birch chips are a product ‘chips’
made of crop ‘birch’.

Name Description Information

a ∈ A Transportation arcs
c ∈ C All crops
d ∈ D Dimensions
i ∈ I Production limits
j ∈ J Alternatives
n ∈ N Nodes in production network
p ∈ P All products: input, intermediate and final
t ∈ T Time periods T =1, . . . , T

n ∈ NP Production nodes NP⊂ P
n ∈ NT Transformation nodes NT⊂ P
n ∈ N S Storage nodes N S⊂ P
n ∈ NC Consumption nodes NC⊂ P
p ∈ PB All basic biomass (untreated, possibly harvested) crops PB ⊂ P
p ∈ PI All intermediate products (treated, possibly ready for use) PI ⊂ P
p ∈ PF All final products (ready for use) PF ⊂ P

Note that PB, PI and PF may overlap partially, while sets NP, NT, N S, and NC must
form a partition of N .

2.1.2 Constants

The flow of products can be measured in a number of dimensions; in bioenergy models,
a typical unit is the energy content [GJ] or dry mass content [tdm], while in other ap-
plications, a volume measure is more appropriate, e.g., [lm3] (loose m3 , e.g., for wood
chips). In the model, subscript d in qd denotes the unit of measurement. Furthermore,
each product p has its default dimension d∗p along which it is measured; it follows that
the default units used for the product are qd∗p , which we denote by q∗p. This can then be
converted into other units using the unit-conversion parameters Uc,p,d.
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Name Description Unit

CA
n1,n2,p,d

Transport costs e/qd

CN
n Operating costs of node n, per period e

CP
n,c Production costs, per area e/ha

CQ
n,c Production costs, per volume e/q∗

pb
c

CR−
n,d Transformation costs (per input unit) e/qd

Dmin
n,t,d Demand minimum qd

Dmax
n,t,d Demand maximum qd

ED
n,p Efficiency of product p in satisfying demand at node n

Pn,t,d Market price e/qd

Q
A
n1,n2,p,d Transportation capacity qd

Q
R−

n,d Input capacity of a transformation qd

Q
R+

n,d Output capacity of a transformation qd

QP
n,c,p,t Actual produced volumes at each period q∗p

Q
P
n,c Production capacity (area) ha

Qmin
i Minimum production of production limit i di

Qmax
i Maximum production of production limit i di

Sn,d Storage capacity qd

Uc,p,d Unit conversion (‘density’) qd/q∗p
Y R
n,p Transformation efficiency (output per input)
Y P
n,c Production yield q∗

pb
c
/ha

2.1.3 Variables

The model has one set of binary decision variables for the node usage, used for calculating
operating costs, plus several continuous, non-negative variables for modeling the flows
and volumes.

Name Description Unit

fn1,n2,c,p,t Transportation flow q∗p
qP
n,c,p,t Production quantity q∗p
qD
n,c,p,t Consumption quantity q∗p
rin
n,c,p,t Transformation input quantity q∗p
rout
n,c,p,t Transformation output quantity q∗p
sn,c,p,t Storage levels at the end of a period q∗p
zn,t Whether a node is used in a period 0/1

Note that we model flows using continuous variables, ignoring the fact that they are
carried by (discrete) vehicles. This is a natural simplification for a tactical/strategic
model, with periods spanning weeks or even months.
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2.2 Production nodes

Production nodes are the sources of the biomass, i.e. the fields or forests. Each node
can produce multiple crops and products, because one field or forest can be planted with
more than one crop and some crops can be harvested in several ways. Note that the latter
effect could also be achieved by letting the production node only ‘produce’ the plant, and
by modeling the harvesting process in separate transformation nodes. This would give us
more control over the harvesting techniques and allow for associating different efficiencies
and costs to the harvesting methods—assuming that we (the optimizing agent) actually
can control these processes.
It follows that the constraints describing the production nodes are necessarily case-

dependent. If we, for example, do not have any control over the production, the produced
volumes are input data to the model:

qP
n,c,pb

c ,t
= QP

n,c,pb
c ,t
,

where pb
c ∈ PB denotes the product of harvesting crop c.

If we, on the other hand, control the production, then we have to distinguish between
cases where there is a harvest time when we harvest all of the crop (as with grains) and
cases where the crops grow continuously and we harvest only a part of the crop (as with
forests). In the former situation, production is limited by the planted area QP

n,c and the
yields Y P

n,c: ∑
t∈T

qP
n,c,pb

c ,t
≤ QP

n,c Y
P
n,c , n ∈ NP, (1)

where the unspecified indices run over their default sets, i.e. c ∈ C. We use this simplifi-
cation throughout the paper.
In the latter case with partial harvesting, we specify the production limits for each

product in some given time period, to ensure sustainability. Each production limit i ∈ I
is specified for every production node (ni), crop (ci), and dimension (di) and time interval
[tS
i , t

E
i ] at which it was measured:

Qmin
i ≤

∑
tSi≤t≤tEi

Uc,p,d q
P
ni,ci,pb

ci
,t ≤ Qmax

i i ∈ I . (2)

If a harvested crop results in several products, as it does for trees, we can model this
through a transformation node, attached to the production node.
Note that the planted area is taken as input data, i.e., the model does not control what

gets planted where in the first model version. This is because in all of our test cases, we
optimized other parts of the supply chain and, therefore, could not make these decisions.
However, the model is easily extensible to situations where the planting/sowing is a part
of the decision process.

2.3 Transformation nodes

Transformation nodes convert products; they represent processes like chipping of trees,
production of pellets from chips, and gasification of biomass.
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There are many possible types of transformation nodes, depending on the number of
input and output products, and by the way they combine. In our model, we use two
different types. First, we have a one-to-many transformation node n, in which an input
product pin

n gets transformed into one or more output products. This is used to model,
for example, tree harvesting, where we separate output products logs and branches.
The produced volumes of each output product p are controlled using the transformation

yield per unit of input product. In addition, each transformation node has a conversion
capacity in terms of the input volume, possibly along several dimensions (weight, volume).

rout
n,c,p,t = Y R

n,pin
n
· rin

n,c,pin
n,t

n ∈ NT (3)∑
c∈C

Uc,pin
n,d

rin
n,c,pin

n,t
≤ zn,t ·Q

R−

n,d n ∈ NT (4)

The other type of transformation nodes in our model represents many-to-one transfor-
mations, where the input products are alternatives, i.e., the output product can be made
using any of the inputs or their mixture. For example, in the miscanthus supply chain
that we present in Section 5.2, pellets can be made from both bales and baled chips.1

The constraints are similar to the ones listed above, except that we have one output
product pout

n and the conversion capacity is given in terms of the output volumes.

rout
n,c,pout

n ,t =
∑
p∈P

Y R
n,p · rin

n,c,p,t n ∈ NT (3’)

∑
c∈C

Uc,pout
n ,d r

out
n,c,pout

n ,t ≤ zn,t ·Q
R+

n,d n ∈ NT (4’)

Another example of this type of transformation is gasification of biomass, though this
would require removing the crop-subscript c from the output product in (3’):

rout
n,pout

n ,t =
∑

p∈P,c∈C
Y R
n,p · rin

n,c,p,t n ∈ NT

Note that having one many-to-one transformation node is very similar to having one
transformation node for each input product p, with a one-to-one transformation from p
to pout

n . The difference is that this would imply separate capacity for each input product,
and to represent a shared input capacity additional transformation nodes would have to
be introduced.
For both presented transformation node types, it is natural to attach costs to the

incoming products. In the former, there is only one product that gets split into several
different ones, while in the latter, the output can be produced from several inputs, where
each one can have different transformation costs.

1Note that this transformation is different from another common many-to-one process, namely the
assembly of parts into one product. There, all inputs are needed to make the output, typically with
fixed proportions—something we have not encountered in any biomass chain that we have studied.
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2.4 Storage nodes

A storage node models the storage of one or several products between time periods. Each
such node is specified by its capacity limits, which can be given along several dimensions
(volume, weight). Storage levels for each product are tracked throughout all time periods:∑

c∈C

∑
p∈P:
∃sn,c,p,t

Uc,p,dsn,c,p,t ≤ zn,t · Sn,d n ∈ N S, d : ∃Sn,d (5)

sn,c,p,t = γn · sn,c,p,t−1 −
∑

n′∈N :
(n,n′)∈A

fn,n′,c,p,t +
∑

n′∈N :
(n′,n)∈A

fn′,n,c,p,t n ∈ N S, c, p, t : ∃ sn,c,p,t, (6)

where 1 − γn represents the mass loss due to storage for one period at node n; γn is
typically a number very close to one. Note that this model assumes that if the storage
can handle several products, then they all share the whole capacity. If each product has
its own dedicated part of the storage place, each should be modeled by their own storage
node, all placed in the same location.
Initial storage levels can be provided or the model can use cyclic behavior where

the storage level in the last period is used as the initial level. The first is modeled as
sn,c,p,0 = Sn,c,p and the second one is modeled as sn,c,p,0 = γn ·sn,c,p,T . In the second case,
the initial storage level is a decision variable whose optimal value becomes an important
part of the solution.

2.5 Consumption nodes

Consumption nodes are nodes consuming some of the products. They are specified by a
minimum and maximum demand for each period:

zn,t ·Dmin
n,t,d ≤

∑
c∈C

∑
p∈PF

ED
n,p Uc,p,d q

D
n,c,p,t ≤ zn,t ·Dmax

n,t,d n ∈ NC, (7)

where each inequality is created only if the associated parameter exists. Note that if
Dmin

n,t,d > 0, then we can fix zn,t = 1. Parameters ED
n,p can be used to limit which

products can satisfy the demand at each given node.
Furthermore, the customers may have limits on different crop shares in the total

amount that they buy. This is modeled similarly to the production limits, i.e., we have a
set K of limits, each specified by its node nK

k and a minimum and/or maximum proportion
of crop cK

k in the mix, denoted by kmin
k and kmax

k . The constraints are then

kmin
k

∑
c∈C

∑
p∈PF

qD
nK
k ,c,p,t

≤
∑
p∈P

qD
nK
k ,cKk ,p,t

≤ kmax
k

∑
c∈C

∑
p∈PF

qD
nK
k ,c,p,t

k ∈ K, (8)

where each inequality is created only if the corresponding limit kmin
k or kmax

k exists for
given k.
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2.6 Transportation and flows

Transport capacity can be provided for any measurement unit:∑
c∈C

Uc,p,d fn1,n2,c,p,t ≤ Q
A
n1,n2,p,d (n1, n2) ∈ A (9)

Moreover, in all nodes except storage nodes, we need conservation-of-flow constraint,
that is, the total consumption, outward transportation flows, and transformation inputs
must equal production, inward transportation flows, and transformation output, in every
time period:

qP
n,c,p,t +

∑
n′∈N

fn′,n,c,p,t + rout
n,c,p,t = qD

n,c,p,t +
∑
n′∈N

fn,n′,c,p,t + rin
n,c,p,t , (10)

for all n ∈ N \N S. In the model implementation, only the required variables will actually
be created at the different types of nodes: production nodes will only have production
and outward transportation flows, etc.

2.7 Objective function

The exact form of the objective function is case dependent: if there is a given demand
that has to be satisfied, then it is natural to minimize the costs of doing so. If, on the
other hand, we can freely choose how much to deliver to each customer, then one also
has to take into account income and maximize the overall profit instead.
Therefore, instead of stating the complete objective function, we list its components:

the income and different types of costs.

income from sale
∑

n,c,p,t,d

Uc,p,d Pn,t,d q
D
n,c,p,t (11a)

production/harvesting
costs,
using constraint (1)

∑
n,c,p,t

(
CP

n,c

Y P
n,c

+ CQ
n,c

)
qP
n,c,p,t (11b)

transportation costs
∑

n1,n2,c,p,t,d

CA
n1,n2,p,d Uc,p,d fn1,n2,c,p,t (11c)

transformation costs
∑

n,c,p,t,d

CR−
n,d Uc,p,d r

in
n,c,p,t (11d)

node-usage costs
∑
n,t

CN
n zn,t (11e)

Note that the node-usage variables zn,t are really needed only for nodes with non-zero
costs CN

n ; without these costs, we could omit the variables, though this would require
slight reformulation of some of the constraints. We discuss this further in Section ??.
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3 Stochastic formulation

In most bioenergy applications, the problems are subject to multiple uncertainties, as
future demand, supply (yield), and prices are seldom known with precision ahead of time.
It is therefore natural to use a model that can handle at least some of the uncertain-
ties. There are several approaches to optimization under uncertainty, of which we have
chosen stochastic programming, in particular its formulation with stochastic variables
represented by discrete scenarios.
It is relatively easy to convert a deterministic model to a two-stage stochastic model

since all we need to add is a scenario index to all the stochastic entities. However, we
want a general multi-stage formulation, because this gives us the freedom to change the
complexity of the stochastic representation solely using data, i.e., without changing the
model.
There are two basic approaches to converting a deterministic model into a general

stochastic one, illustrated graphically in Table 1.
In a scenario-based formulation, we simply add a scenario index to all time-dependent

model entities and then enforce the scenario-tree structure using so-called non-anticipa-
tivity constraints (Birge and Louveaux, 1997). While adding the extra index is easy,
adding the constraints is not a trivial task. In addition, it will make the model bigger.
Even in the very simple scenario tree in Table 1, we have five groups of constraints, one
with four nodes and four with two nodes. To enforce the equality, one typically sets all
nodes equal to the first one, resulting in k− 1 constraints for a group of k nodes. In our
case, this means 3 + 4× 1 = 7 constraints . . . for every stochastic variable.

Alternatively, in a node-based approach, we replace the time index by a scenario-tree-
node index for all time-dependent model entities. The structure of the scenario tree is
then described by providing a parent (or predecessor) node Pa(v) to each node v ∈ V:
Pa(1) = 0,Pa(2) = 1, . . . ,Pa(11) = 8,Pa(12) = 11. While this avoids extra constraints,
it makes the model more difficult to read, especially if we have constraints that cover
more than two periods (as we can see in Table 1).
Hence, we use a ‘hybrid’ approach where we use the node-based approach for all model

entities, but provide extra data structures that allow us to use scenario numbers in the
model formulation where needed. In particular, we define SP(t, s) to specify the node in
period t ∈ T of scenario s ∈ S; taking an example from the last figure of Table 1, the
scenario-tree node corresponding to t = 2 in scenario s = 3 is z8, so we have SP(2, 3) = 8.
Using this parameter, we can write the constraint from Table 1 as

4∑
t=0

zSP(t,s) = 1 , s ∈ {1, . . . , 4}

This way, we have eliminated the major disadvantage of the node-based formulation,
without the extra constraints needed for the scenario-based approach.
With this notation in place, rewriting the deterministic model from Section 2 into a

stochastic one becomes relatively straightforward. For all of the variables, we replace the
time index t with the new stochastic-node index v ∈ V. For links between periods, t− 1
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Table 1: Comparison of the two types of stochastic model representations, on a five-
period tree with binary branching in periods 2 and 4. The blue boxes in the
scenario-based formulation denote groups of nodes that have to be set equal
using non-anticipativity constraints.

model type graphical representation example constraint

deterministic
z0 z1 z2 z3 z4

4∑
t=0

zt = 1

stochastic
scenario-based

z0,1 z1,1 z2,1 z3,1 z4,1

z0,2 z1,2 z2,2 z3,2 z4,2

z0,3 z1,3 z2,3 z3,3 z4,3

z0,4 z1,4 z2,4 z3,4 z4,4

4∑
t=0

zt,s = 1,

∀s ∈ {1, . . . , 4}

stochastic
node-based

z0

z1 z2

z3 z4

z5 z6

z7 z8

z9 z10

z11 z12

zv + zPa(v) +
zPa(Pa(v))

+ zPa(Pa(Pa(v)))

+
zPa(Pa(Pa(Pa(v)))) =
1,

∀v ∈ {4, 6, 10, 12}

becomes Pa(v), while links further back in time are easiest written using the SP(t, s)
table.
As we have discussed in Section 2, one can construct several different objective func-

tions using the elements presented in (11), depending on the optimizing agent. Here, we
present a stochastic version of one of the variants, namely an agent maximizing the over-
all profit in the supply chain. For simplicity, we assume a risk-neutral agent and therefore
maximize the expected profit, i.e., the probability-weighted profit over all scenario nodes.
The whole model from Section 2, with equation numbers referring to the original

deterministic ones, is then as follows:

maximize
∑
v∈V

Pr(v)
(∑
n,c,p,d

Uc,p,d Pn,Per(,)vd q
D
n,c,p,v −

∑
n,c,p

(
CP

n,c

Y P
n,c

+ CQ
n,c

)
qPn,c,p,v

−
∑

n1,n2,c,p,d

CA
n1,n2,p,d Uc,p,d fn1,n2,c,p,v

−
∑

n,c,p,d

CR−

n,d Uc,p,d r
in
n,c,p,v −

∑
n

CN
n zn,v

) (11s)

subject to
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∑
t∈T

qPn,c,p,SP(t,s) ≤ Q
P
n,c Y

P
n,c , n ∈ NP, p ∈ PB (1s)

Qmin
i ≤

∑
tSi≤t≤tEi

Uc,p,d q
P
ni,ci,pb

ci
,SP(t,s) ≤ Qmax

i i ∈ I (2s)

routn,c,p,v = Y R
n,pin

n
· rinn,c,pin

n,v
n ∈ NT (3s)∑

c∈C
Uc,pin

n,d
rinn,c,pin

n,v
≤ zn,v ·Q

R−

n,d n ∈ NT (4s)

∑
c∈C

∑
p∈P:
∃sn,c,p,v

Uc,p,d sn,c,p,v ≤ zn,v · Sn,d n ∈ N S (5s)

sn,c,p,v = γn · sn,c,p,Pa(v)
−
∑

n′∈N :
(n,n′)∈A

fn,n′,c,p,t +
∑

n′∈N :
(n′,n)∈A

fn′,n,c,p,t n ∈ N S (6s)

zn,v ·Dmin
n,t,d ≤

∑
c∈C

∑
p∈PF

ED
n,p Uc,p,d q

D
n,c,p,v ≤ zn,v ·Dmax

n,t,d n ∈ NC (7s)

kmin
k

∑
c∈C

∑
p∈PF

qDnK
k ,c,p,v ≤

∑
p∈P

qDnK
k ,cKk ,p,v ≤ k

max
k

∑
c∈C

∑
p∈PF

qDnK
k ,c,p,v k ∈ K (8s)

∑
c∈C

Uc,p,d fn1,n2,c,p,v ≤ Q
A
n1,n2,p,d (n1, n2) ∈ A (9s)

qPn,c,p,v +
∑

n′∈N
fn′,n,c,p,v + routn,c,p,v = qDn,c,p,v +

∑
n′∈N

fn,n′,c,p,v + rinn,c,p,v n ∈ N \N S (10s)

Just like in the deterministic model, we have to decide how to deal with the initial
storage levels in (6s). If we used the initial-storage constraint (sn,c,p,0 = Sn,c,p) in the
deterministic model, then we can use it without change. If, on the other hand, we used
the cyclical storage approach (sn,c,p,0 = γn · sn,c,p,T ), then we have to decide how to
interpret this in the stochastic settings. There are several possible approaches to this,
each with merits and problems:

sn,c,p,0 =
∑
v∈VT

Pr(v) · sn,c,p,v (12a)

sn,c,p,0 = sn,c,p,v ∀v ∈ VT (12b)
sn,c,p,0 ≤ sn,c,p,v ∀v ∈ VT , (12c)

where v = 0 is the root node of the scenario tree and VT is the set of last-period nodes,
VT = {v ∈ V : Per(v) = T}.
The first formulation, (12a), ensures that on average, we will finish with the same

amount in storage at the end as at the start. This is probably the most natural extension
of the deterministic version. It can, however, give undesired effects; for example, assume
that we include demand as the only stochastic parameter in the model and that the
optimal storage level in the first period is s∗0 > 0. Constraint (12a) will then cause the
end-of-horizon storage level to be higher than s∗0 in low-demand scenarios and lower—
possibly even zero—in scenario(s) with the highest demand. The end-of-horizon storage
level could even be zero in the ‘average’ scenario, which would imply that the results found
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by the model would not provide proper guidance for two successive average years (since
the average year needs positive initial storage levels, but finishes with empty storage).
This problem is avoided in version (12b), where the final storage has to be equal in

all scenarios. Unfortunately, this creates new problems. If we, for example, have one
scenario with very low demand, it may be optimal to end up with a high level of storage
at the end. With (12b), however, the final storage at the end of the low-demand scenario
has to be the same as in high-demand scenarios. The optimal solution might then be to
produce lower amounts of biomass, which may imply a huge loss of profit potential. The
last issue is resolved in (12c), where we allow the low-demand scenarios to end up with
more storage. Another way of resolving the issues in (12b) is to add extra time at the
end of the horizon, to allow the models to settle on common storage levels (Thapalia,
Wallace, and Kaut, 2009).
In contrast to (12a) that ensures that on average, we will finish with enough storage

to continue another average year, (12c) ensures that this happens in every scenario. In
this sense, the latter represents a more conservative risk attitude. For this reason, this
is the formulation we use in our implementation.

4 Extensions to the model

In this section, we present several extensions to the model. We formulate them for the
stochastic version of the model, but note that they can be used for the deterministic
version as well. Each of these adds specific functionality to the model. They can be
combined, depending on what is needed for each case.

4.1 Terminals

By terminal, we mean an area with multiple facilities (e.g., transformation and storage).
In the context of the model, a terminal is a grouping of one or more nodes. There are at
least two uses for terminals in the model: they allow us to model costs associated with
running the terminal in addition to costs for each facility/node. For this, we just need
to associate a binary variable yg to each terminal g ∈ G and then require that the nodes
belonging to the terminal, n ∈ NG

g , can be used only if yg is equal to one:

zn,v ≤ yg n ∈ NG
g , v, g : ∃ zn,v and ∃ yg .

More importantly, in some applications the goal of the model is to establish a new
terminal, by choosing one from a list of candidate locations. We model this in a more
general way, using a set J of ‘alternatives’. For each alternative j ∈ J , we then specify
a group of terminals, Gj , with associated lower and upper bounds on the number of
terminals to be opened, Gj and Gj :

Gj ≤
∑
g∈Gj

yg ≤ Gj j ∈ J
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If we are to choose exactly one from all of the potential terminals, we do this using
J = {1}, G1 = G, and G1 = G1 = 1. This formulation assumes that the decision
regarding terminals is made at the start of the first period and is valid for the entire
duration of the model. An alternative would be to add a time index to these decisions,
so that they can be postponed. Note that this would increase the number of binary
variables, and hence, the solution time.
In addition to the above constraints, we would also need to add the costs of opening the

terminals,
∑

g C
G
g yg , to the objective function. Note that we could easily add terminal-

usage costs (per period) as well, though it would require extra binary variables.

4.2 Drying

In forestry applications, it is important to model drying of the wood. There are at least
two approaches to modeling the process in an optimization model, where the difference
is whether we treat the moisture content continuously or discretize it. In the former
case, we attach a variable for moisture content to each product that needs drying and
then track how this value decreases over time. The difficulty with this approach is that
one needs to express the energy content of the product as a function of the moisture
content—and since this relationship is non-linear, this would mean employing some kind
of piecewise-linear approximation (Van Dyken, Bakken, and Skjelbred, 2010).
In the latter approach, we expand the set of products to contain additional information

about moisture content. For example, we replace the product type ‘log’ by ‘log 20%,’
‘log 40%,’ ‘log 60%,’ and ‘log 80%,’ each with the appropriate energy content. With this
approach, drying is modeled as a change in the product type, after given time in storage.
In our implementations, we have used the latter approach, where the transformation

does not depend only on the time spent in the storage, but also on the actual period –
the model was developed for a customer in Norway, where wood dries only during the
summer.
In the model, the possibility that a product p of crop c can transition into another

product in storage node n is signaled by existence of r = Rn,c,p. The transition is then
specified by its output product pout

r , the last period in which the product must arrive to
the storage in order to undergo the transition tin

r , the first time period when the transition
is finished and the output product can be taken out of the storage tout

r , and finally, the
mass loss during the transition κr. In our particular case, we say that all fresh wood that
is in storage by the end of April is dry at the start of September, so we have tin

r = 3 and
tout
r = 9.
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With this notation, (6) is modified in the following way:

sn,c,p,v = γn · sn,c,p,Pa(v) −
∑

n′∈N :
(n,n′)∈A

fn,n′,c,p,v +
∑

n′∈N :
(n′,n)∈A

fn′,n,c,p,v

− γtoutr −tinr
n · sn,c,p,tinr if exists r = Rn,c,p and Per(v) = tout

Rn,c,p

+
∑
p′∈P:

∃ r=Rn,c,p′

p=pout
r ,Per(v)=toutr

γtoutr −tinr
n · (1− κr) · sn,c,p′,tinr

(6’)

With the values stated above, the second line ensures that in September, the fresh wood
will be removed from storage, while the third line replaces it with a corresponding amount
of dry wood (minus the losses κr). Note that this assumes that no fresh trees are removed
from storage during the drying period.2

An alternative, and simpler, way of modeling the drying process would be to assume a
constant drying rate throughout the year, that is, to assume that crop c stored at node
n needs ∆tdc,n time periods to transition from product pw to product pd. If we assume
that only fresh crops enter storage and only dry crops leave storage, then the storage
equation (6) would become

sn,c,pw,v = γn · sn,c,pw,Pa(v) +
∑

n′∈N :
(n′,n)∈A

fn′,n,c,pw,v −
∑

n′∈N :
(n′,n)∈A

fn′,n,c,pw,Per(v)−∆tdc,n

sn,c,pd,v = γn · sn,c,pd,Pa(v) −
∑

n′∈N :
(n,n′)∈A

fn,n′,c,pd,v +
∑

n′∈N :
(n′,n)∈A

fn′,n,c,pw,Per(v)−∆tdc,n

(6”)

Note that this approach can be used to model active drying, we just need to set the
storage-using costs accordingly and perhaps introduce a volume-dependent cost as well.

4.3 Tracking equipment

The transformation equation (4) assumes that the capacity is given and constant for
each transformation node. This, however, ignores the fact that some transformations
need extra equipment—which we refer to as a ‘transformation device’—to be present in
the transformation node. An example of such a requirement is a mobile chipper needed
for off-terminal chipping of wood. Since we normally have only a limited amount of these
devices, we need to ensure that each is used only in one place at a time.
There are several ways of handling this in the model. If the devices are so mobile

that they can be used in several nodes during one period, we can simply add constraints
that limit the overall transformation capacity (summed over all transformation nodes)
to the capacity of the available devices. Note that this means that we do not control

2If this was a problem, one could add additional product types for ‘drying wood’ that would be
forbidden to be taken out of the storage.
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the amount of nodes a device is used at during one period and it also ignores relocation
costs. On the other hand, the approach does not add any new variables, and therefore,
should not increase the solution time of the model. This approach is used, for example,
in Gunnarsson, Rönnqvist, and Lundgren (2004).
If, on the other hand, the transformation devices are costly and/or time-consuming

to move, we would need a more detailed representation in our model. There, each
transformation device h ∈ H is specified by its output product PH

h ∈ P, set of nodes
where it may be needed NH

h , and transport costs CH
h,n1,n2

between nodes n1 and n2.
We then introduce binary variables wh

n,v denoting whether a transformation device h is
present in node n in scenario-tree node v, plus additional variables for tracking their
movements where: wh

n,n′,v is equal to one if the transformation device h is moved from
node n to node n’ at the end of period of the scenario-tree node v.

wh
n,v = wh

n,Pa(v) −
∑

n′∈NH
h \{n}

wh
n,n′,Pa(v) +

∑
n′∈NH

h \{n}

wh
n′,n,Pa(v) h ∈ H, n ∈ NH

h (13)

∑
n∈NH

h

wh
n,1 = 1 h ∈ H (14)

zn,v ≤
∑

h∈H:n∈NH
h

wh
n,v n ∈ NT (15)

Note that it is enough to have (14) only for the first period, since the flow-conservation
constraints (13) guarantee that they will hold in all periods. Finally, constraints (15)
ensure that transformation nodes cannot be used without the required device in place.
Furthermore, the movement-tracking variables wh

n,n′,v do not need to be declared as
binary in the model, since they will be automatically integer because of constraints
(13). Nevertheless, these variables might increase the solution time significantly, so they
should be included only if relocation costs of the devices are high enough compared to
other costs. If not, we can simply remove these variables and constraints (13) from the
model.

5 Illustrative examples

In this section we present two different cases. In one case, we used a deterministic version
of the model, while in the other we included uncertainty. The first case is based on the
harvesting of trees, while the raw material in the second one is cultivated. The examples
are meant to illustrate the flexibility of the model and show benefits from using an
optimization based decision support tool. For this reason, to emphasize the illustrative
insights, only three future scenarios are considered in the case with uncertainty.
Both examples have been implemented in the Mosel modelling language and solved

using FICOTM Xpress Optimizer, on an dual-core 2.4GHz machine with 8GB of RAM.
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Malo

Håhjem

Aspøya

Årø

Ørsta

Tingvoll

Figure 2: The area used in the test case in Section 5.1. The heat plants are denoted
by ‘ ’, while ‘ ’ denotes the possible locations of terminals.
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5.1 Wood-based bioenergy supply chain

In this example we consider a supply chain where wood chips are used in heating plants
in western Norway. Wood is available in large quantities in the area, but difficult to
harvest due to the steep terrain, which translates to high production costs. The wood
chips can be produced from different species, each with different energy contents: pine,
spruce, and hardwood.
Production of wood chips can be performed with a mobile wood chipper at the felling

areas or at the terminals. The difference between these two alternatives is that trans-
portation of wood chips is cheaper than transportation of logs, but the operational costs
of a mobile chipper are larger than those of a stationary chipper at a terminal.
The wood can be used directly (as fresh chips) in some heating plants, but, more

commonly, drying is needed before use. Drying can take place at felling areas or at the
terminal, and before or after chipping, which means that there are a lot of choices to be
made in the upstream part of the supply chain. Trees cut in winter/spring can be used
the fall, while trees cut in summer/fall cannot be used until the next fall. This means
that timing of felling and storage capacity are important factors to consider in order to
meet demand.
Terminals are usually a large area where logs and chips can be dried and stored for

protection against rain and snow. Storage and drying at the felling sites is more uncertain
and the losses are higher due to less controlled conditions. The heating plants have limited
capacity for storage of chips and their demand for chips is largely correlated with weather
conditions, which results in seasonal variation. Some of the plants are even closed during
summer. An illustration of the value chain in this example is given in Figure 3.
In the example case from the Møre region in Norway, we have the perspective of the

society of forest owners. A map of locations in the example case can be seen in Figure
2. Note that ferries are needed for transportation between Håhjem and Ørsta, Håhjem
and Årø, and Aspøya and Årø, but Malo and Årø are connected by tunnel.
We want to decide timing and area for felling, when and where to chip, and where

to deliver. We also want to make decisions regarding if and where a terminal should
be opened. In the example, we have three existing heating plants and three candidate
locations for a terminal. Another important input parameter is the available wood from
different species; these data are generated by using a GIS tool based on data from the
Norwegian government. The costs incurred are production costs for felling, transporta-
tion costs, chipping costs, and costs related to storage. Sales amounts to heating plants
are measured in energy output of delivered chips (not volume). We do not include rental
costs for the terminal areas. In negotiations, profit can be used as a guideline for the
forest owners to decide how much they are willing to pay in rent for a terminal. The
objective function is to maximize total profit.
We want to decide timing and area for felling, when and where to chip, and where to

deliver. We also want to make a decision on if and where a terminal should be opened.
In the example we have three existing heating plants and three candidate locations for a
terminal. Another important input parameter is available wood of different species, this
data is generated by the use of a GIS tool based on data from the Norwegian government.
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Forest area

Terminal Plant location

Production Harvest Drying Chipping

Drying Chipping Storage Storage Burning

fresh wood
dry wood
dry chips

Figure 3: Structure of the forest supply chain in Section 5.1. Note that the case
includes three heat plants and three possible terminal locations, each with
three forest areas attached. The forest areas are connected only to the
nearest terminal, while each terminal can supply all three heat plants.

The costs incurred are production costs for felling, transportation costs, chipping costs,
costs related to terminal and costs related to storage. Sales amounts to heating plants
are measured in energy output of delivered chips (not volume). The objective function
is to maximize total profit.
In this example case, we use all of the extensions presented in Section 4: we have

multiple terminals to choose from (4.1), the wood or chips need drying before they can
be sent to the heat plants (4.2), and we have one mobile chipper whose location and
movement have to be tracked (4.3). For initial storage levels, we use the ‘steady-state’
formulation with initial levels equal to the end-of-horizon levels, minus some losses.
In addition, we added extra constraints to prohibit harvesting, drying and chipping

around a closed terminal. In the core model, the storage constraints (6) allow flow of
products through a storage node, even if the node is closed. In our particular case, this
was not realistic, so we added the following constraints for the storage nodes at terminals:∑

n′∈N :
(n′,n)∈A

fn′,n,c,p,t ≤ Mn,c,p,t · zn,t ,

where the constants Mn,c,p,t are upper bounds on the left-hand side sums, ensuring that
the constraints are inactive when zn,t = 1. Note that this type of ‘big-M constraints’
is known to lead to bad LP relaxation, especially with large values of the constants. It
is therefore advisable to find as tight upper bounds of the left-hand sides as possible.
Note that in our case, it is actually possible to avoid the ‘big-M formulation’ of these
constraints altogether, though at the cost of more changes to the model.
The time perspective of the example case is one year, with each time period being a

month in length. The heat plants’ demand varies throughout the year. We do not require
the demand to be fully satisfied, as there are other sources from which the heat plants
can buy their fuel.
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Table 2: Summary of results of the case from Section 5.1. All financial values are in
thousand NOK.

number of terminals 1 2 3

Revenues 11,020 11,020 11,211
Transp cost 1,572 1,296 1,271

Profit 4,276 4,550 4,642
Total consumption [MWh] 40 40 41
Avg. demand satisfaction 80.6% 80.6% 93.2%
Cost increase for 100% sat. 0.77% 0.19% 0.06%
Value of extra terminal – 274 92

5.1.1 Numerical results

The example case has been tested imposing how many of the three potential terminal lo-
cations should be opened. The differences between opening one, two, and three terminals
were then been analyzed and compared. Solution times for the three cases were, respec-
tively, 7, 8, and 31 seconds. Most of the complexity comes from the binary variables used
for tracking the mobile chippers—without them, the model solves much quicker.
In the case where we allow only one terminal to be opened, the model uses the one at

Aspøya. Looking at the map in Figure 2, this may be surprising, as one could expect
the middle terminal (Malo) to be preferred. This, however, can be explained by the
topology of the Norwegian west coast. Because of the fjords, the shortest way from Malo
to Tingvoll passes by both Årø and Aspøya, and to Ørsta by Årø and Håhjem.
In all the cases, the terminals are used only for storing chips. In other words, all drying

and chipping is done in the forest area adjacent to the terminals. This is due to the fact
that the disadvantages (higher costs and losses) of forest storage and chipping are more
than compensated by lower transportation costs of chips versus whole trees—a finding
that is in concordance with Kanzian, Holzleitner, Stampfer, and Ashton (2009).
The numerical results are summarized in Table 2. There, we can see that having

two terminals increases the expected profit by 274 thousand NOK, due to decreases in
transportation costs. This value should then be compared to the cost of opening the
extra terminal. For three terminals, the advantage of the extra terminal decreases to 92
thousand NOK.
While the optimal strategy with one and two open terminals is to satisfy only 80.6%

of the energy demand at the three heat plants (on average), the extra costs of satisfying
all off the demand are very low. It can therefore be expected that, in practice, one would
aim to satisfy all demand. This would decrease the plant operators’ incentives to look
for alternative fuel sources giving competitors access to the region. For this reason, we
assume 100% demand satisfaction in the following figures.
Figure 4 presents the storage levels of the final product (chips) at the terminal and

heat plant storages in the case with full demand satisfaction. The graph for the results
with one open terminal is on the left, two in the middle, and three to the right. We
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Figure 4: Storage levels of chips at the heat plants and terminals.

can see that there is a big difference between one and two open terminals. Having the
extra terminal allows for more storage to build up, which then leads to a decrease in
transportation costs, and therefore higher profit. Common to all of the three cases is
the buildup of storage during the fall, caused by the fact that the wood has to first dry
during the summer.
Finally, Figure 5 presents the flow of chips through storage at the heat plants, for the

case of three open terminals and full demand satisfaction. In addition, this figure shows
chipping activity at and around the terminals.
We can see that even with all three terminals open, only the heat plant at Tingvoll

gets its supply solely from the closest terminal; the Ørsta plant uses two terminals and
the Årø plant, being in the middle, gets supplied from all three. This is caused by the
fact that we only have one mobile chipper, combined with limited storage volume at both
terminals and heat plants.

5.2 Miscanthus transformation plant

Miscanthus is a perennial grass that is increasingly being used for bioenergy purposes. We
consider a miscanthus transformation plant located in the Burgundy region of France.
The plant previously produced pellets from sugar beets; it now produces pellets from
perennial grasses and wood.
Miscanthus is harvested in March and April with three possible options: harvesting

and chipping to small chips (2-3 cm) transported directly to the plant, or harvesting and
baling with 8–10 cm strands or with 20–30 cm strands. The small chips are compressed,
packed, and sold in bags for use in gardening (mulching). The bales can be stored locally
at the farmer’s location and transported to the plant as needed. All bales should have
been picked up by the end of July to make room for autumn crops. The bales with short
strands, also called baled chips, can be used for pellet production and animal bedding, as
well as for energy purposes. Bales with long strands are only used for pellet production.
Due to the smaller strands, producing baled chips will incur greater losses both during
baling and later handling, but provides flexibility due to multiple sales options. Each
harvesting option is modeled as a separate transformation node, see Figure 6. We do not
consider drying explicitly in the model as miscanthus is only harvested when moisture
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Figure 5: Flow of chips through the storage at the heat plants, plus the chip produc-
tion, per month. The negative values in the first three charts denote the
flow of chips to the plant (i.e. consumption).
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Figure 6: Structure of the flow of miscanthus.

levels are acceptably low.
We consider a case based on current fields planted with miscanthus using estimated

yields for mature crops (Rizzo, Martin, and Wohlfahrt, in press 2014) and increased
storage capacity compared to the existing state. To illustrate the value of a stochastic
model, we consider a situation where the demand of pellets is uncertain. This uncertainty
is revealed after harvesting decisions have been made, with demand at the expected level,
or 20% higher or lower than that level, with probabilities 0.4, 0.3, and 0.3, respectively.
This is an example of a two-stage stochastic programming problem, where the first-stage
decisions (how to harvest) are based only on the data available at that time. Table 3 gives
a summary of the test case characteristics; note that pellets sell at a slightly higher price
than bagged and baled chips. We use a profit-maximizing objective similar to equation
(11); we have twelve periods, corresponding to a monthly granularity and we use a cyclic
storage behavior.
We start by comparing solutions of the stochastic and deterministic versions of the

model, where the latter uses expected values for the stochastic parameter, as presented
in the left chart of Figure 7. There, we can see that the results are quite intuitive: the
deterministic model produces more bales (long strands) due to smaller losses compared
to baled chips (short strands). The stochastic model, on the other hand, produces more
baled chips, because these can be used to produce pellets (albeit more expensive than
using bales with long strands), and thus compensates for the uncertainty of the pellets’
demand.
We proceed by comparing how the two solutions fare in the stochastic environment. To

do this, we solve the stochastic model with the first-stage decisions (production variables)
fixed to the solution of the deterministic model, and compare the results to the optimal
solution of the stochastic model.3 The results of this comparison are in the right chart of

3In our case, the model becomes infeasible because in the low-demand scenarios, we are left with
more unsold products than we have storage for. For this reason, we have added additional variables that
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Table 3: Test case characteristics

Production: Producers 60 farmer locations
Yield 10-18 tdm/ha
Total area 320 ha

Harvesting: Chipping Cost e 6.7 / tdm, loss 5%
Baling, long Cost e 29.2 / tdm, loss 5%
Baling, short Cost e 29.2 / tdm, loss 10%

Transport: Distances Road distances based on OpenStreetMap data
Cost e 0.4–1.2 / tdmkm

Storage: Capacity Plant 6720 m3

Cost No storage cost or loss is considered

Sales: Chips Max 100 tdm/ month, price e 75 / tdm

Baled chips Max 200 tdm/ month, price e 75 / tdm

Pellets Max 300 tdm/ month, price e 85 / tdm

Chips Baled chips Bales
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Figure 7: Results of the miscanthus case using the deterministic and stochastic solu-
tions are presented. The left chart displays the transformed quantities of
harvested miscanthus. The right chart displays the expected profit of the
two solutions when evaluated on the scenario tree.
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Figure 8: Sold amounts are presented per scenario. The left column in each set repre-
sents the deterministic solution; the right column represents the stochastic
solution.

Figure 7. We can see that the deterministic solution fares better in the mean-value and
high-demand scenario, but suffers in the low-demand scenario, so it is worse on average.
Again, this is due to its higher use of the cheaper, yet inflexible, bales. This can be
seen explicitly in Figure 8, which shows negligible differences in the sold amounts in the
first two scenarios, but higher sales of baled chips for the stochastic solution in the last,
low-demand, scenario. Again, this shows that the stochastic solution covers part of the
pellets’ demand in the first two scenarios using baled chips (causing smaller profits in
these two scenarios), which gives it the opportunity to sell more when the demand for
pellets is low. In other words, the baled chips are used as a buffer against uncertainty in
pellets demand.
Finally, we compute the value of stochastic solution (VSS, see Birge and Louveaux,

1997), given as the difference between the expected profit of using the optimal stochastic
and deterministic solution. This is the difference between the last two columns shown in
the right chart of Figure 7:

VSS = e 116 902− e 114 666 = e 2236 . (16)

This means that in this case, the stochastic solution adds only about 2% to the deter-
ministic one. This is mainly because we have only one stochastic parameter in the model
(the demand of pellets). If we let more of the parameters (other demands and prices)
be stochastic, the stochasticity would have a higher impact and the value of stochastic
solution would increase. On the other hand, it would make interpretation of the results
significantly more complicated.
Let us go back to the second value in (16), that is, the expected value of using the

expected-value solution (EEV) and compare it to the objective value of the deterministic
model, which is e 117467. This shows that if we ignore the uncertainty and solve the
deterministic model, the reported profit is an over-estimation of the actual profit in the
uncertain world (this is a known, and general, observation). It is also interesting to note

allow ‘throwing away’ products (with neither cost nor income). Obviously, these variables are all zero in
the optimal stochastic solution.

25



Table 4: Results of the case from Section 5.2 for different number of scenarios. Ob-
jective values and the VSS are in thousand Euro, while the solution time is
in seconds and includes also the time to build the model.

#sc. obj. value VSS #variables sol. time

1 117.5 – 6 437 0.3
3 116.9 2.2 12 773 0.4

10 116.4 2.0 34 949 0.8
30 116.1 1.8 98 309 2.2

100 116.0 1.8 320 069 7.7
300 116.0 1.8 953 669 28.0

1 000 115.9 1.8 3 171 269 206.7

that the expected profit of the stochastic solution is very close to this figure, showing
that its flexibility can almost compensate for the uncertainty.

5.3 Adding more scenarios

So far, we have only tested the stochastic formulations with three scenarios. While
this allowed us to examine the difference between scenario solutions, one needs more
scenarios to obtain reliable results. To test how many, we have solved the same problem
with varying number of scenarios. To keep the model consistent with the three-scenario
case, we have used normal distribution with the mean and variance computed from the
three scenarios.
The results of the test are presented in Table 4. There, we can see that both the

objective value and VSS stabilize at about hundred scenarios. Furthermore, we can see
that the case with one thousand scenarios takes three and a half minutes to solve; the
time is equally split between building the model and solving it.

Concluding Remarks

We present a new, generic optimization model for strategic and tactical planning of the
biomass to bioenergy supply chain under uncertainty. The model structure is flexible
and capable of representing relevant characteristics and issues related to the biomass-
bioenergy supply chain, including technological process details, capacity limitations in
multiple units of measurement, time variability in supply and demand, and uncertainty
in virtually all aspects. Two cases of different supply chains illustrate how the model
can be parameterized for different types of analysis, and give insight in the effects of
uncertainty on optimal decisions.
The model presented can be used by actors in all parts of the supply chain considered.

It can improve the decision making processes by giving results and enabling analysis of
different possibilities much faster than traditional planning. Integrated in the companies’
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software this can be a powerful tool for planners and decision makers in an industry with
high competition and tight margins.
The flexibility of the model opens for easy expansion and improvement of the model.

More details about different stages in the model or tailor-made setups for different com-
panies are examples of likely requests from the industry that can be included. Further
development can make the model even more powerful and the value of using the model
can be increased, making the bioenergy industry more competitive.
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