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We study how to model and handle correlated travel times in two-stage
stochastic vehicle routing problems. We allow these travel times to be cor-
related in time and space, that is, the travel time on one link in one period
can be correlated to travel times on the same link in the next and previous
periods, as well as travel times on neighboring links (links sharing a node)
in both the same and the following periods. Hence, we are handling a very
high-dimensional dependent random vector. We shall discuss how such vehi-
cle routing problems should be modeled in time and space, how the random
vector can be represented, and how scenarios (discretizations) can meaning-
fully be generated to be used in a stochastic program. We assume that the
stochastic vehicle routing problem is being solved by a search heuristic, and
focus on the objective function evaluation for any given solution. Numerical
procedures are given and tested. As an example, our largest case has 142
nodes, 418 road links and 60 time periods, leading to 25,080 dependent ran-
dom variables. To achieve an objective-function evaluation stability of 1%,
we need only fifteen scenarios for problem instances with 64 customer nodes
and 9 vehicles.
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1. Introduction

Vehicle routing, in all its variants, is one of the most studied problems in logistics
(Fisher and Jaikumar 1981, Laporte 2009, Potvin 2009, Pillac et al. 2013, Campbell
and Wilson 2014, Lin et al. 2014, Prins et al. 2014, Cattaruzza et al. 2016). But for
historical as well as numerical reasons, the vast majority of papers are on deterministic
problems. Stochastic versions have started to occur, see for example the reviews Pillac
et al. (2013), Gendreau et al. (2016), Oyola et al. (2018), Ritzinger et al. (2016). The most
studied stochastic phenomenon is demand (Juan et al. 2013, Zhu et al. 2014, Goodson
2015), followed by travel time (speed) (Laporte et al. 1992, Tas et al. 2013, Han et al.
2014), service time (Lei et al. 2012, Errico et al. 2016) and finally, random occurrence
of customers (Bent and Van Hentenryck 2004).

Most vehicle routing problems (VRPs) are solved using search heuristics (Potvin 2009,
Vidal et al. 2013, Martinelli and Contardo 2015, Wang et al. 2015), and a natural part
of doing so is to evaluate the objective function for a given solution. If that was easy,
most existing heuristics for vehicle routing could fairly easily be adopted to the case
of correlated stochastic travel times (or speeds). After all, most search heuristics have
two parts, the search part and the objective function evaluation part. The focus of this
paper is only on the evaluation part. In order to demonstrate our approach, we shall
need both a test case within the family of VRPs and a search heuristic, but neither of
these represent contributions.

In the following we shall talk about speeds rather than travel times. The two are of
course equivalent, but we do this for two reasons. The first is that it seems more natural
to talk about speed changing from one period to the next when in fact the trip is not
completed within a given period. The second is that for scenario generation, it is best
to work on bounded random variables, and travel times are unbounded if speeds are
allowed to be zero (which makes sense over short time periods).

Our contributions are closely related to the many challenges set out in Gendreau et al.
(2016) on how to represent a high-dimensional dependent random vector of speeds, how
to generate scenarios for the underlying stochastic program, and how to perform function
evaluations in the case where speeds are stochastic and correlated in time and space.
By “correlated in time”, we mean that the speed on a link in one period is correlated
with the speed on the same link in nearby time periods. By “correlated in space”, we
mean that speeds on close by links are correlated, so that if there is a traffic jam on one
link, most likely—but not for sure—there is a traffic jam also on neighboring links. This
must be distinguished from VRP literature (stochastic as well as deterministic) covering
“time-dependent travel times” (or speeds) but where the time dependence only means
that speeds (or expected speeds in a few cases) are different in different time periods
(Tas et al. 2014, Soysal et al. 2015, Nejad et al. 2016). The time-dependent VRPs in the
literature have been investigated both on the map (Ehmke et al. 2016, Huang et al. 2017,
Ehmke et al. 2018) and on the network of customer nodes (Ichoua et al. 2003, Tas et al.
2014, Cimen and Soysal 2017). Interested readers can refer to the review paper by Ticha
et al. (2018) for more information. There will be an implicit time correlation in the speed
scenarios in such a context (Fu and Rilett 1998, Ehmke et al. 2018). The correlation



will take its sign from the direction in which the mean speed moves. Similarly, Huang
et al. (2017) consider implicitly spatial and temporal correlations by classifying the links
into three categories (i.e., expressways, arterials, and residential roads) and assuming the
travel speeds of links in each category are time-dependent. However, correlations in real-
world speeds represent more than that. They must represent such as the fact that free
flow of traffic usually lasts for a while, and slow traffic takes time to disappear. Therefore
the research cited above cannot cope with the challenges proposed by Gendreau et al.
(2016). Our approach covers correlations whatever their cause.

Few previous VRP studies have considered space- and time-correlated travel times
although real-world speeds are correlated in both time and space. Lecluyse et al. (2013)
consider this type of correlated travel times in VRPs by using the concept of congestion
circles to represent traffic congestion in road networks. Following the same representa-
tion, Schilde et al. (2014) further consider similar spatio-temporal correlations between
travel speeds on different streets in a dynamic dial-a-ride problem. However, it is hard
to determine the congestion circles accurately over time.

Hence, our starting point is very general. We are concerned with the evaluation of
any solution (set of vehicle routes) to any VRP, by either declaring it to be infeasible
or calculating the objective function value, when speeds are stochastic and correlated
explicitly in time and space. For details, see towards the end of Section 2. The major
questions will be how we can represent the stochasticity, including how scenarios can be
generated (as discrete random variables will be needed), and how many scenarios are
needed. The number of random variables will easily be in the tens of thousands, and
care has to be taken in order to handle such big dimensions.

In other words, the setting is one where we have a stochastic VRP and a heuristic
that can be separated into a solution-generating and a solution-evaluating part. Our
contribution is then to perform the latter in a way that works for a large collection
of different VRPs where there is an underlying map. We do this by combining an
existing general scenario generation method (which fits the structure of VRPs well) with
a stability test for evaluating objective functions. For VRPs with time- and space-
correlated stochastic speeds, scenario generation is a major undertaking, which creates
discrete random variables from the background data (or from some modeling activity).
In fact, it is most likely the main bottleneck for solving such problems.

The paper is organized as follows: In Section 2 we discuss the modeling of VRPs with
correlated speeds. Section 3 presents our overall approach. Section 4 is dedicated to
scenario generation. Stability tests and an investigation into how many scenarios are
needed can be found in Section 5. The test case is outlined in Section 6, while numerical
results can be found in Section 7. We sum up in Section 8.

2. Modeling the Routes

The VRP is defined on a road network, represented by a directed graph G = (V, L),
where V = {0,1,...,V} is a set of vertices (nodes) and £ = {1,...,L} is a set of
directed (road) links connecting the nodes in V. Node 0 in V represents the depot at



which are based K vehicles with capacity Q. Let N' = {1,...,N} (N C V) denote
the set of customers, with specified demands, that need to be served. The VRP is the
problem of finding the optimal set of vehicle routes starting and ending at the depot,
such that each customer in N is served exactly once and the total demand of a route
does not exceed @), while optimizing a specified objective.

We shall split the planning horizon into P periods of equal length. In deterministic
models with P = 1, we can simply compute the shortest travel times between the
customer pairs and then proceed using the (much smaller) network of customers, instead
of the road network G. But if travel times (speeds) are random and depend on time, this
is not quite as easy when P > 1. Huang et al. (2017) discuss this issue in great detail.
They demonstrate that when speeds are time dependent, path selection between a pair
of customers will depend on the time of day. They call this path flexibility. If speeds are
also stochastic, the path will depend on both time of day and realizations of the random
speeds.

Let us add a few comments about dependence as that is the focus of this paper. First,
note that even if all road link speeds were independent, the pairwise customer speeds
would not, as long as some of the best paths between customers share a link. Hence,
assuming independence for customer-to-customer speeds would imply that no pairs ever
shared a road link on the map, which is impossible to achieve for larger cases. So if we
were to operate on the network of customer nodes, we would have to use stochastically
dependent speeds. However, this dependence would be hard to describe as it would
depend on path selection. And this relationship would be even more complicated if the
road link travel speeds were already dependent. We are not investigating this potential
approach for handling dependencies in this paper.

To be able to represent path flexibility as outlined by Huang et al. (2017), while also
handling path dependencies as just outlined, we find it necessary to operate on the map
and not on the network of customer nodes. Therefore, a scenario contains the speed on
each road link in each period, so it is of dimension L x P.

Note that there are papers that use the assumption of independent customer-pair
travel times (Tas et al. 2013, Feng et al. 2017). This can of course be seen as an
approximation of real-world travel times. But overlooking dependence, caused by link
speeds being themselves dependent and paths sharing links, will result in too low variance
on route travel times, as disregarded correlations will mostly be positive. Models using
independent customer-pair speeds will therefore underestimate travel time variation.

For route selection within the VRP, as described in Section 3, our approach will allow
for any of the following principles.

e The route, given from the solution-generating part of the algorithm, is a complete
sequence of nodes (or links) from V), not just a sequence of customer nodes. In the
case that the route is a sequence of nodes, it can be allowed to look for quicker
detours (rather than the direct link).

e A route is a sequence of customer nodes, and the path between two consecutive
customer nodes is determined by the path with the shortest expected travel time,
given the point in time we leave the first node in the pair. An interpretation is



hence that when the vehicle is actually operating, it will need expected speeds
(given the time of day), but not actual speeds. This is partly in line with the
concept of path flexibility as outlined earlier (Huang et al. 2017), in which the
path between two consecutive customer nodes is selected from a set of candidate
paths consisting of distance-minimizing paths and time-minimizing paths for a
given departure time and average travel times in each time period.

e A route is a sequence of customer nodes, and the path between two consecutive
customer nodes is determined by the path with the shortest travel time, given
the speeds at the point in time when we leave the first node in the pair. In our
view this is a very reasonable choice if real-time data for speed is available when a
vehicle is actually operating.

e Technically, we can also handle the case when paths are picked based on the full
set of speeds in the scenario. But this makes little sense to us as it implies using
principally unavailable information about the future.

It is worth noting that many companies use available apps or other software to de-
termine paths when actually driving. But beware that this is very difficult (if not
impossible) to include in a model for a VRP, where finding routes is the issue. So even
though these services may indeed lead to very good paths on a route, they are not easy
to use to find the routes (i.e., which customers to assign to which vehicle, and in which
order they should be visited). Using present speeds to determine paths approximates
this approach.

We are operating in a two-stage setting. So our approach does not support a true multi-
stage setting where customers assigned to a given vehicle are determined on-route (which
makes sense for pickups and some deliveries) or where the customers are determined
beforehand, but the sequence is not. The approach can be used to approximate the
latter case, but no true dynamic optimality will be found.

Given a complete route of nodes (or links) in the graph, we need to calculate the
travel time (and certain costs) for a given vehicle and a given scenario. Our approach
can handle the following alternative situations, depending on what is the setup in the
VRP.

e No time windows.

e If there is an earliest arrival time at a customer, we can handle a requirement to
wait (hard constraint) and / or pay a penalty for being early (soft constraint).

e If there is a latest arrival time at a customer, we can handle a penalty for being
late (but still serve the customer, a soft constraint), simply skipping the customer
and pay a penalty (another type of soft constraint), or declare the route to be
infeasible (hard constraint).

In the test case in Section 6, we assume that a route is a sequence of customer nodes,
and that path selection is based on present speeds when a vehicle leaves a customer. In



all cases, we shall be careful to handle the stochastically dependent speeds consistently
when evaluating the objective function for a given route on a given scenario, as that is
the core of this paper. For example, even if the path between a pair of customers is
determined based on present speeds, the actual travel time will be valued based on the
realizations in the scenarios.

3. Evaluating the objective function

As mentioned in Section 1, search heuristics are usually used to find good solutions
to VRPs. These heuristics start with one or more initial candidate solutions and then
try to improve the candidate solutions iteratively via local moves. During iterations,
the performance of each candidate solution to the stochastic VRP is evaluated by the
function evaluation method outlined in this section.

Let us sum up the parts that are needed to solve stochastic VRPs:

(1) a search heuristic,

(2) an objective function evaluation approach, and

(3) scenario set consisting of |S| scenarios. Each scenario s € S has one speed for each
link in each period, so a complete scenario represents one possible realization of speeds
across time and space (e.g., all travel speeds on all road links in all periods).

We take the search heuristic from the literature. Assume we have a feasible solution
to the VRP (a set of routes) using K vehicles. Each route is a sequence of customer
nodes plus a starting time from the depot. The search heuristic operates just as in the
deterministic case, as it moves from one solution to the next. Given a solution, the road
network graph G, and the scenarios, we now need to compute the expected objective
value corresponding to the solution. Take a VRP of minimizing the total cost f as an
example. Whenever a solution needs to be valued, the objective function evaluation
approach proceeds as follows:

For each scenario s € S do
For each route r in the solution do
Set t(s,r) equal to time leaving depot
Set f(s,r) to zero
For each pair (i, j) of customers (including depot) do (* in sequence on route *)
Take speeds from scenario s at time ¢(s, )
Find the best path from customer ¢ to customer j using these speeds, based
on the objective to be optimized
Update t(s,r) based on speeds in scenario s, handling time and possible
waits at the customer to know when leaving customer j
Update f(s,r) to reflect the costs incurred from customer i to customer j
End
End
End

We now have travel times and costs on each scenario for each route, and can calculate
values of travel times and costs as required by the VRP being analyzed.



We see that both the heuristics for finding routes and the best path calculations
can be done with existing deterministic methodology. Thus, what is missing are the
scenarios. We shall take a scenario generation method from the literature that takes
marginal speed distributions, a limited set of correlations and the requested number of
scenarios as input and produces scenarios as output. This procedure is purely technical,
and will be presented in Section 4. To see if it actually delivers in our context, we check
how many scenarios are needed to create results with acceptable accuracy and numerical
feasibility by a stability test. Also this test follows known procedures from the literature,
and will be presented in Section 5. So the contribution of this paper is to show how all
these pieces can be put together in the right way so as to produce a numerically feasible
approach for the space- and time-correlated stochastic VRP.

If two consecutive customers ¢ and j on vehicle k’s route are not directly connected
by a link in G, we find, using Dijkstra’s algorithm, or one of its variants, the best path
(e.g., with the shortest travel time) between customers ¢ and j using speeds on the links
in scenario s for the period in which the vehicle leaves node i. The logic is that when
the vehicle leaves node i, in reality, only speeds for that period are known, and they will
be used to decide on where to travel. Hence, this path might not be best ex-post, i.e.,
after reaching node j, if that happens in a later period. Of course, other ways to find the
best path between customers ¢ and j can be used, without any changes in the function
evaluation approach. We refer to Casey et al. (2014) for a more detailed overview over
time-dependent shortest path algorithms.

With the setup above we start at the depot. We use present speeds (or possibly
expected speeds as discussed in Section 2) in the Dijkstra algorithm to find the best
path to the first customer. The setup then follows the method of Ichoua et al. (2003);
we follow a link either to the next node (as we are still in the same period) or we follow
the link until the period ends, using the speed of that period, and then continue on the
same link with the speed of the following period. When we arrive at the customer, we
check potential time windows, and add possible earliness or tardiness penalty costs, if
any, wait or declare an infeasibility, depending on the VRP at hand. Then we move to
the next customer using exactly the same setup, until we are back to the depot. We
then register total travel time plus potential penalties along the route.

Our approach, as outlined above, can handle many variants:

e A route is a sequence of nodes from the map rather than sequence of customers.
In that case the best path calculations can be skipped.

e The best path calculation can be skipped if two customer are neighbors on the
map in case one wants to model that drivers never make detours for direct links.

e The best paths are based on average speeds rather than present speeds to represent
that real-time speeds will not be available during operations.

e Hard and soft time windows.



Numerical tests on variants of the VRP can be found at the end of Section 7.1 and
in the Appendix. This will show that the approach is fairly flexible, and that the core
question is how to find the right set of scenarios.

4. Multi-Dimensional Distributions and Scenario Generation

Stochastic programs need discrete random variables. As pointed out earlier, some papers
build on the assumption that customer-to-customer speeds are independent, despite the
fact that this cannot be the case in real-world road networks with sufficient traffic flow.
Apart from this, we see that Tas et al. (2013, 2014), Feng et al. (2017) use distribution
functions (so not scenarios) that can be added along paths, and these approaches are
distinctly using stochastic independence. In Huang et al. (2017) and Han et al. (2014),
the scenarios of travel speeds are assumed given, whereas the scenarios are sampled from
a truncated normal distribution in Lee et al. (2012). In Cimen and Soysal (2017), we find
assumptions of independent normal distributions that are subjected to a discretization
scheme to fit into an approximate dynamic programming framework.

Most of the general literature on scenario generation is about how to generate scenar-
ios from a distribution of some sort, see for example Dupacova et al. (2000), Lee et al.
(2012) and Chapter 4 of King and Wallace (2012) for reviews. But most of these ap-
proaches will not work numerically in the kind of dimensions we face in many real-world
VRPs. For example, our largest case with 418 road links and 60 time periods results in
25,080 random variables and more than 310 million distinct correlations (more details in
Section 6), and this is not even a very large setting from an applied perspective. So even
if we had data, and could calculate marginal distributions and a correlation matrix (in
their own rights not very difficult), it would be quite a challenge to use them for finding
scenarios using any of the existing methods. It seems to us that the only way would be
to sample from the empirical distribution if we had one. If so, the issue would be how
many scenarios would be needed in order to achieve a good set of scenarios representing
the distribution well in these high dimensions. We expect the number to be very large,
in line with the expectations expressed in Gendreau et al. (2016).

It is common in the optimization literature, when the issue is testing of algorithms and
we do not have data, to simply invent a reasonable data set. In our case, “reasonable”
mostly refers to the resulting correlations that, even if not real, should make sense —
they should describe a potentially real situation. Either one sets up scenarios directly,
or one guesses on a distribution and then uses that distribution to find scenarios, be that
by sampling or some other methodology, for example using one of the many methods
outlined in Chapter 4 of King and Wallace (2012). However, notice that there are some
major issues here. We believe that simply guessing a limited set of scenarios in these
dimensions makes little sense. The distribution we would then, in fact, be using, would
easily be pure noise. So the alternative would be to guess a distribution. We would then
suffer from the same dimensionality problem as we just mentioned for the case when
we had data. For our largest case we would need more than 310 million correlations.
But the fact is, guessing on a 25,080 by 25,080 matrix and ending up with a positive



semi-definite matrix (so that it would potentially be a correlation matrix) is close to
impossible, except for the uncorrelated case, which is not what we discuss in this paper.

4.1. Updating a Guess of a Correlation Matrix

If we have a matrix that we “like”, i.e., a matrix that to the best of our understanding
shows how the dependencies are, but which does not lead to positive semi-definiteness,
we can, in principle, proceed by finding some matrix that is close to the one we have, but
which is positive semi-definite, and hence could be used as a correlation matrix. This
approach is outlined in Lurie and Goldberg (1998), where they minimize the root-mean-
square error of the positive semi-definite matrix relative to the starting matrix. Be aware,
though, that non-zero correlations may show up at the most peculiar places representing
strange dependencies. These strange correlations may affect the optimal routes directly,
for example by utilizing a fake negative correlation to hedge against variation in route
travel times. It is normally possible, ex post, to check if strange correlations ended up
effecting the optimal solution. We shall discuss this in more detail in Section 5 where we
discuss stability. Updating a guessed matrix in the dimensions we are facing will in any
case be quite a numerical challenge, as a Cholesky decomposition and a Gauss-Newton
method are involved, so also this argues against trying to guess a correlation matrix.
The updated matrix will normally be singular, and that is also a challenge for some
scenario generation methods!.

Let us point out that it is up to the user to accept if a positive semi-definite matrix
is reasonable or not as a correlation matrix. This is not a mathematical question,
but a question of modeling or problem understanding. The matrix will most certainly
have unexpected non-zero elements, representing unexpected correlations (even negative
ones), but may still be acceptable for our problem.

4.2. Practical Consideration

Let us see where we stand. We could guess a set of scenarios and use them. Most likely
that would result in a distribution with totally arbitrary properties. We could estimate
(if we had data) or guess a correlation matrix, but as we have pointed out, guessing is
very difficult — close to impossible. In any case, we would be facing serious numerical
challenges due to the size of the matrix. So, in our view, we need an alternative approach
that is numerically feasible, and would work whether or not we had data. It will amount
to a heuristic, but we shall see that we can control the quality of the approach.

We shall use the scenario-generation method from Kaut (2014) that allows for speci-

Lurie and Goldberg (1998) write ”We applied the procedure to replace this indefinite matrix with a
“nearby” positive semi-definite matrix. All of the eigenvalues changed as a result of this procedure. In
particular, the single negative eigenvalue was replaced with the value of zero, resulting in an adjusted
correlation matrix that was positive semi-definite (but not positive-definite). This result occurred
because the procedure attempts to minimize the distance between the adjusted and unadjusted
correlation matrices. Any larger adjustment, yielding a strictly positive eigenvalue, would have
increased the value of the distance measure.”



fying marginal distributions plus a subset of correlations®. This method fixes values for
all variables upfront and assigns those values to scenarios, trying to match the specified
“correlations”. Randomness appears only as a tie-breaker in the heuristic used for the
assignment. As a result, the method has a high probability of producing exactly the
same scenarios on two consecutive runs. The method allows any subset of correlations,
and we shall make a specific choice, consistent with the structure of solutions to VRPs
— routes. Numerical testing will show that it is a good choice. Moreover, the scenario
generation method has the property that the means in the scenario set are always equal
to the means in the underlying distribution. So even though other aspects of the distri-
bution might be off (it is an approximation, after all), the mean of travel times on each
link and hence the mean on each route are correct.

Let Y denote the number of neighboring link pairs (pairs of links meeting in a node) in
a road network. We shall specify the correlations for each such link pair in each period.
This leads to Y x P correlations. Furthermore, in period p (1 < p < P), the travel speed
on link [ is correlated with the speeds on the same link and its neighboring links in the
next period, which leads to (Y + L) x (P — 1) correlations within P periods. Other
correlations are not specified as they are not used in the scenario generation method.
That is, given P and L, the number of correlations among links in the network, used in
our scenario generation method, is Y x P+ (Y + L) x (P — 1), which is much less than
the total number of correlations. Since Y is linear in L, the total number of correlations
is linear in the number of random variables, L x P. In our largest case with Y = 2015,
L=418 and P =60, we need to define 2015x 60+ (2015+418) x 59 = 264, 447 correlations,
much less than the total number of over 310 million.

The question is then whether or not using such a limited set of correlations causes
major problems in the overall setup of Section 3. If we have data, we would calculate
these correlations from the data set, then knowing that there really is at least one true
correlation matrix containing the correlations we used. If we do not have data, we would
use problem understanding or intelligent guesses to find them. This could lead to a set
of “correlations” that in fact are not part of any actual correlation matrix, and we would
not know if this had happened. For this reason, any scenario generation method that
needs consistent data could be in trouble, since the scenario generation could be based
on a non-existing distribution. Our setup does not suffer from this problem directly, as
the scenario generation method we use looks for scenarios that in some sense are close
to what was specified. But that means that we are facing two sources of noise if we have
guessed on the data; The fact that only a limited set of correlations was used, and that
possibly, the scenarios were generated based on inconsistent specifications. With real
data, only the first source of noise is present. The stability tests in the next section will
help us see whether or not this noise caused serious errors. We shall see that despite
these potential problems, the approach does indeed produce high quality results.

2 Actually, the method works by matching bivariate copulas for all specified variable pairs, but since we
use normal copulas that have correlations as their only parameter, we will use the term ‘correlations’
in the rest of the paper.
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5. Stability

Gendreau et al. (2016) point out that “the number of scenarios required to realistically
describe all of the possible realizations of the parameters will likely be quite large, thus
creating tractability issues”. But how large is that? Unless the scenarios put into the
stochastic program is the full description — and that is hardly the case in vehicle routing
— there is a need to be assured that the scenario set represents the underlying data or
distributions well. The classical problem here is a trade-off between a solvable problem
but where the results are just noise due to a bad representation, and a numerically
unsolvable problem (due to size) but where the representation is good. This is a central
question for any attempt to solve stochastic VRPs, and the answer will depend on what
method is used to generate the scenario set.

Since we assume that the VRP is solved with a search heuristic, evaluating the objec-
tive function for a given feasible solution will be linear in the number of scenarios. So
with |S| scenarios, the objective function evaluation will take |S| times longer for the
stochastic case than for the deterministic case (which corresponds to one scenario). It is
therefore crucial to keep the number of scenarios low, while at the same time knowing
the quality of the evaluation for the given scenario set. Our point in this paper is to
show that with a careful choice of scenario generation method, |S| can be kept rather
low.

There are several ways to assess the quality of a set of scenarios, either in terms of
the set itself or the solution it provides. An overview can be found in Chapter 4 of King
and Wallace (2012). What we shall use is a heuristic test, inspired by Kaut and Wallace
(2007). The goal is to provide confidence that we have enough scenarios to obtain quality
solution evaluations.

In order to determine the necessary number of scenarios, we proceed as follows. We
take a number of instances of our problem. The instances will vary in terms of the
number of customers and vehicles, but will be for a given graph G. We then ask, given
our scenario generation method and our test case (details in Section 6), how many
scenarios do we need so that we know that the objective function evaluations are good
enough if that scenario generation method is used?

Many standard scenario-generation methods, such as sampling, will produce quite dif-
ferent results if they are rerun with the same input data. We can therefore generate a
number of scenario sets of the same size and measure stability on them. This research
uses the scenario-generation method from Kaut (2014). As mentioned in Section 4.2, this
method works differently and has a high probability of producing exactly the same sce-
nario set on two consecutive runs, so the ‘standard’ stability tests would overestimate its
quality. Instead, we use a workaround suggested in Kaut and Wallace (2007) and replace
N scenario sets of size |S| with 2m+1 sets of sizes |S|—m, |S|—-m+1,...,|S],...,|S|+m,
for some chosen m.

The stability test is then as follows: for each instance, generate a set of feasible
solutions; the first is the optimal (or a good) solution to the deterministic version of
the problem (as that is available by assumption), the others some permutations of this
solution (more details in Section 7.1). For each of these solutions, calculate the objective
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function value according to the method described in Section 3 using each of the 2m + 1
scenario sets. Then find the largest (F™) and smallest (F'~) objective function values
and calculate the relative difference (F'™ — F~)/F*. We define the stability level of |S|
for that instance and that value of m to be the largest such difference over all the tested
solutions. Then pick the smallest |S| having the required stability level, say 1% or 2%.
We study how the stability varies across instances to come to overall views on the choice
of |S]. We make sure that we only apply this test when F'* and F~ have the same sign.
In our cases, they are always positive. We also test the dependence on m.

Doing stability testing this way has an added positive feature relative to the more
common in- and out-of-sample stability used in Kaut and Wallace (2007). When a
stochastic VRP is solved with a heuristic, there will be two sources of noise: the search
heuristic and the scenario generation method. When fixing a set of solutions, as we do,
all the noise in the measures come from the scenarios, helping in deciding the necessary
number of scenarios. After all, the choice of search heuristic is not the point of this
paper; the point is to evaluate feasible solutions. This problem of scenario generation
and search heuristic is also part of the setup in Hui et al. (2014).

As already outlined, we are using a scenario generation method that is in itself a
heuristic, sometimes not even based on a genuine multi-dimensional random vector. In
particular, the method will most likely lead to some spurious correlations in the scenario
set. In Section 4.1, we discussed how a matrix that had been guessed, based on our
best understanding of a problem, could be updated to become a proper correlation
matrix, if the guess did not lead to a positive semi-definite matrix. We pointed out that,
apart from major difficulties of dimensions, this is in own right straightforward. But
we 