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Stability analysis of portfolio management

with conditional value-at-risk

Michal Kaut,† Hercules Vladimirou,‡ Stein W. Wallace,† and Stavros A. Zenios‡

January 22, 2010

Abstract

We examine the stability of a portfolio management model based on the conditional value-
at-risk (CVaR) measure; the model controls risk exposure of international investment portfolios.
We use a moment-matching method to generate discrete distributions (scenario sets) of asset
returns and exchange rates so that their statistical properties match corresponding values
estimated from historical data. First, we establish that the scenario generation procedure
does not bias the results of the optimization program, and we determine the required number
of scenarios to attain stable solutions. We then investigate the sensitivity of the CVaR model
to mis-specifications in the statistics of stochastic parameters: mean, standard deviation,
skewness, kurtosis, as well as correlations. The results are most sensitive to estimation errors
in the means of the stochastic parameters (asset returns and currency exchange rates). Mis-
specifications in the standard deviation, skewness and correlations of the random parameters
also have considerable impact on the solutions. The effect of mis-specifications in the values
of kurtosis, although less than that of the other statistics, is still not negligible.

1 Introduction

The conventional mean-variance approach, that constitutes the primary basis for portfolio se-
lection, assumes that asset returns follow normal distributions and/or that the investor has a
quadratic utility function. Despite the long and widespread use of the mean-variance method in
portfolio management, its fundamental assumptions often do not hold in practice. The returns of
many financial securities exhibit skewed and leptokurtic distributions. Derivatives, or securities
with embedded options, have, by construction, highly skewed return distributions. Many other
investments are exposed to multiple risk factors whose joint effect on portfolio returns often can
not be modelled by a normal distribution.

Substantial research effort has been directed toward the development of models that properly
capture asymmetries and dynamic effects in the observed behavior of asset returns. At the same
time, alternative risk metrics have been sought. Such measures are concerned with other, or
additional, characteristics of the return distribution (e.g., the tails) besides the variance, and can
accommodate a wide range of investor priorities and regulatory requirements for risk management.
Value-at-risk (VaR) has essentially attained the status of a de-facto standard in financial practice
(see, e.g., Jorion [10]). VaR is defined as the maximal loss (or minimal return) of a portfolio
over a specific time horizon at a specified confidence level; VaR corresponds to a percentile of the
portfolio’s loss (or return) distribution at a specified confidence level.

Despite its widespread popularity in recent years, VaR suffers from a number of theoretical
and practical limitations. Although its calculation for a certain portfolio indicates that shortfall
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returns, below VaR, will occur only with a prespecified likelihood, it provides no information on the
extent of the distribution’s tail which may be quite long; in such cases, the portfolio return may
take substantially lower values than VaR and result in severe losses. More importantly, VaR is not
a coherent risk measure in the sense defined by Artzner et al. [3]. It fails to reward diversification,
as it is not subadditive; hence, the VaR of a diversified portfolio can be larger than the sum of the
VaRs of its constituent asset components. Moreover, when the returns of assets are expressed in
terms of discrete distributions (i.e., scenarios) VaR is a non-smooth and non-convex function of the
portfolio positions and exhibits multiple local extrema (see, e.g., Rockafellar and Uryasev [15]).
Incorporating such functions in mathematical programs is very difficult, thus making impractical
the use of VaR in portfolio optimization models.

To overcome the deficiencies of VaR, suitable alternative risk metrics have been sought. Artzner
et al. [3] discuss such metrics and specify the properties that sound risk measures should satisfy,
which they characterize as coherent risk measures. A family of closely related risk metrics —
termed as expected shortfall, mean excess loss, tail VaR, conditional VaR — have been suggested
that quantify the mass in the tail of the distribution beyond VaR. Tasche [16] examines the proper-
ties of this family of measures; he shows that it characterizes the smallest coherent risk measures
to dominate VaR and that it can incorporate higher moment effects. Acerbi and Tasche [1] show
that the alternative definitions of these measures lead to the same results when applied to contin-
uous loss distributions. They note that differences appear when the underlying distribution has
discontinuities and they demonstrate that, in such cases, care must be exercised in the details of
the definition to maintain the desired properties of coherence.

Rockafellar and Uryasev [15] introduced a definition of the conditional value-at-risk (CVaR)
measure for general distributions, including discrete distributions that exhibit discontinuities, and
showed that CVaR is a continuous and convex function of the portfolio positions. Most importantly,
they showed that a CVaR optimization model can be formulated as a linear program in the case
of discrete distributions of the stochastic input parameters. CVaR is defined as the conditional
expectation of losses exceeding VaR; it is a coherent risk measure that quantifies the worst (lowest)
portfolio returns below the respective VaR.1 As CVaR is concerned with the tail of the distribution
it is a suitable risk measure when the distribution is asymmetric and/or heavy-tailed.

As a result, CVaR models are seing increasing use in various financial management applica-
tions. For example, CVaR models have been suggested by Bogentoft et al. [4] for asset-liability
management of pension funds, by Krokhmal et al. [13, 14] for hedge fund portfolios and by An-
derson et al. [2] for credit risk optimization. Jobst and Zenios [9] showed that CVaR models are
effective for modelling credit risk and accounting for default events in the tails. Topaloglou et
al. [17, 18] applied CVaR models to international portfolio management problems to account for
asymmetric and leptokurtic distributions of exchange rates and asset returns.

A specification of the distribution of stochastic parameters (asset returns) is a critical input
for all portfolio management models. In parametric models, the multivariate distribution is spec-
ified by the values of key statistics that are usually estimated using historical data, analytical
methods, analysts’ forecasts and other methods. In nonparametric models, the distribution is
usually represented in terms of a discrete set of plausible outcomes (scenarios) that are generated
by simulation, bootstrapping historical data, or even subjective estimates in some cases. In all
cases, the reliability of the model’s results depends on the accuracy with which the postulated
distribution approximates the true distribution of the random variables — which is never actually
observable. Hence, the models are inevitably exposed to estimation errors. Consequently, it is
important to understand the sensitivity of a model to mis-specifications of distributional charac-
teristics, and to assess the relative effects that mis-specifications of various statistical properties
have on the results. This can guide analysts in their choice among alternative estimation meth-
ods, as well as in the relative effort they invest to obtain robust estimates of the various model

1When defined in terms of portfolio returns, this risk measure is commonly referred to as Return-at-Risk (RaR).
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inputs.
As CVaR is concerned with the tail of the portfolio’s return distribution, models that employ

this measure are expected to be sensitive to higher moments of the constituent assets’ random
returns. This paper aims specifically to study the stability of a CVaR portfolio management
model with respect to changes in input specifications. In this respect, we follow previous studies
on stability of mean-variance models.

Most notably, Kallberg and Ziemba [11], Chopra and Ziemba [6] and Broadie [5] examined
the relative effects of estimation errors in the mean, variance and covariance of asset returns
on mean-variance efficient portfolios. They found that the model results are most sensitive to
mis-specifications in the means of asset returns. They reported that the impact of errors in the
variance of asset returns was about an order of magnitude lower than that of errors in the means,
while errors in covariance values had about half the impact of errors in the variance. Chopra
and Ziemba found that the sensitivity of the model’s results to estimation errors of statistical
properties of asset returns varies with the level of risk aversion. Broadie pointed out that the
impact of estimation errors on the mean-variance model increases with the number of securities
included in the portfolio.

Here, we extend these studies as we similarly investigate the effects of mis-specifications in
statistical properties — including higher moments — of asset returns on the results of a model
based on the CVaR measure. As a test case we use a portfolio optimization model for international
investments. The portfolio is exposed to market risk in multiple countries and to currency risk.
We use discrete scenarios to model the uncertainty in asset returns and spot exchange rates. The
scenarios are generated by the moment matching method of Høyland et al. [7] so that in the set
of generated scenarios the random variables have statistical properties that match specific target
values as determined from historical market data.

First, we define in-sample and out-of-sample stability and we demonstrate that the scenario
generation procedure does not bias the results of the optimization model. That is, for sufficiently
large scenario sets, the portfolio model produces stable solutions that are not dependent on
the specific scenario sets (i.e., the results are stable with respect to sample). We then conduct
extensive computational experiments to assess the effects on the model’s results due to variations
in the target statistics: mean, standard deviation, skewness, kurtosis and correlations of the
random variables. We demonstrate that the CVaR model is indeed sensitive to the higher moments
of the stochastic inputs. Moreover, we quantify the relative impact of mis-specifications in the
various statistical properties of the inputs on the model’s results.

The paper is organized as follows. Section 2 presents the CVaR model for international portfolio
management that we use as a test case in this study. Section 3 describes the scenario generation
method, the input data, and the tests to verify the stability of the optimization model with respect
to the scenario generation procedure. In section 4 we describe the computational experiments
involving mis-specifications in the statistical properties of stochastic input parameters and we
present the effects of these errors on the model’s results. Finally, section 5 concludes.

2 CVaR Model for International Portfolio Management

We test a CVaR model for international portfolio management. We view the problem from the
perspective of a US investor who may construct a portfolio composed of domestic and foreign
securities. Thus, we have a simple portfolio construction problem with a holding period of one
month. To purchase foreign securities, the investor must first convert funds to the respective
currency; the current spot exchange rates apply in the currency exchange transactions.

The asset set includes a stock index (Stk), a short-term (Bnd1) and a long-term (Bnd7)
government bond index in each of four countries: United States (USA), United Kingdom (UK),
Germany (Ger) and Japan (Jap). The values of the assets and the exchange rates at the end of
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the holding period are uncertain; their joint distribution is modelled in terms of a scenario set
(i.e., a set of discrete outcomes with associated probabilities).2 At the end of the holding period
we compute the scenario-dependent value of each investment using its projected price under the
respective scenario. The USD-equivalent value is determined by applying the estimate of the
appropriate spot exchange rate to USD at the end of the period under the same scenario.

The portfolio is exposed to market risk in the various countries, as well as to currency risk.
To (partly) hedge the currency risk, the investor may enter into forward currency exchange
contracts. The monetary amounts (in USD) of forward contracts are decided at the time of
portfolio selection, but the currency exchanges are executed at the end of the holding period.

We define the following notation:

User-specified parameters:

α confidence (percentile) level for VaR and CVaR

ϑ minimal allowable CVaR of portfolio returns

Sets and indices:

M set of markets (synonymously, countries, currencies)
` ∈M index of investor’s base (reference) currency in the set of currencies
M f set of foreign markets; M f = M \ {`}
Ij set of available asset classes (stock and bond indices) in market j ∈M
S set of scenarios: S = {1, . . . , S}

Deterministic input data:

c` amount of initially available cash in base currency `, (c` = 100)
π0ij current market price of asset i ∈ Ij , j ∈M ; in units of local currency j

γij transaction cost rate for purchases of asset i ∈ Ij , j ∈M ,
(γStk,j = 0.001 , ∀ j ∈M ; γBnd1,j = γBnd7,j = 0.0005 , ∀ j ∈M )

λ transaction cost rate for spot currency exchanges, (λ = 0.0001)
e0j current spot exchange rate of currency j ∈M

ϕj current one-moth forward exchange rate of currency j ∈M (i.e., the market-quoted
rate for a currency exchange to be executed at the end of the holding period)

Scenario dependent data:

S number of scenarios, S = |S|
ps probability of scenario s ∈ S — in our tests, scenarios are equiprobable (i.e., ps = 1/S)
πsij price of asset i ∈ Ij , j ∈M at the end of the holding period under scenario s ∈ S;

in units of local currency j
esj spot exchange rate of currency j ∈M at the end of the holding period under

scenario s ∈ S

Decision variables:

xij number of assets i ∈ Im, j ∈M in the portfolio, in units of face value
fj amount of base currency collected from sale of currency j ∈M f in the forward market

(i.e., amount of forward contract, in units of the base currency)

Auxiliary variables:

2In this model instance we have 15 random variables: the returns of the 12 indices (3 for each of the 4 countries)
during the holding period, and the exchange rates of the 3 foreign currencies to USD at the end of the holding
period.
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vs total value of the portfolio at the end of the holding period under scenario s ∈ S,
in units of the base currency

rs portfolio return under scenario s ∈ S
z variable in definition of CVaR — equals VaR at the optimal solution

ys return shortfall below VaR under scenario s ∈ S, ys = [ 0, z − rs ]+

All exchange rates are expressed as the equivalent amount of the base currency for one unit of
the foreign currency. Obviously, the exchange rate of the base currency to itself is trivially equal
to one e0` = es` = 1, ∀ s ∈ S.

We formulate the international portfolio selection model as follows:

maximize
∑
s∈S

psr
s (1a)

s.t. c` =
∑
i∈I`

xi`π
0
i` (1 + γi`) +

∑
j∈Mf

e0j (1 + λ)

∑
i∈Ij

xijπ
0
ij (1 + γij)

 (1b)

vs =
∑
i∈I`

xi`π
s
i` +

∑
j∈Mf

 fj + esj

∑
i∈Ij

xijπ
s
ij −

fj
ϕj

 , ∀ s ∈ S (1c)

rs = (vs − c`)/c` , ∀ s ∈ S (1d)

ys ≥ z − rs , ∀ s ∈ S (1e)

z − 1

1− α
∑
s∈S

psys ≥ ϑ (1f)

ys ≥ 0 , ∀ s ∈ S (1g)

fj ≥ 0 , xij ≥ 0 , ∀ j ∈M ,∀ i ∈ Ij (1h)

This is a simplified version of the international portfolio management model in Topaloglou
et al. [17]. The model in that paper accounts for an initial portfolio — including cash and asset
positions in any currency — and determines transactions — asset sales and purchases, as well
as spot currency exchanges — so as to obtain a revised portfolio. A multi-stage extension of
that model to address dynamic international portfolio management problems is developed in
Topaloglou et al. [18]. Here, we consider a simple portfolio construction model that selects a
portfolio starting with an initial cash endowment in the base currency only.

The objective function (1a) maximizes the expected portfolio return over the holding period.
Equation (1b) is the budget constraint; it indicates that the cost for the purchase of domestic
and foreign assets is covered by the available cash (c`). Linear transaction costs (γij) are charged
for asset purchases (xij); a linear transaction cost (λ) is also charged for spot currency exchanges
that are effected in order to purchase foreign assets. Note that the entire budget is allocated
to the available assets; a simple extension of the model can allow investments in money market
accounts in the various currencies.

Equations (1c) determine the scenario-dependent values of the portfolio (vs), in units of the
base currency, at the end of the holding period. These valuation equations account for the revenues
from the liquidation of all portfolio positions at the end of the holding period at the projected
asset prices (πsij) for the corresponding scenario. The contribution of foreign investments to the
total value of the portfolio accounts for the settlement of any outstanding forward contracts (fj).
The residual amount in a foreign currency is valued in terms of the base currency by using the
projected spot exchange rates (esj) at the end of the holding period. Equations (1d) determine
the return of the portfolio under each scenario.
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Constraints (1e) and (1g) determine the excess shortfall returns, beyond VaR, under each
scenario. Constraint (1f) imposes a minimal allowable value (ϑ) on the CVaR of portfolio returns
over the holding period at the (1− α)100th percentile. At the optimal solution, the variable z is
equal to the VaR at the same percentile — when constraint (1f) is active, which is always the case
in this model. The constraints in (1h) disallow short positions.

The linear programming formulation of CVaR models when the stochastic inputs follow a dis-
crete distribution is due to Rockafellar and Uryasev [15]. The model here maximizes the expected
portfolio return while constraining the CVaR value of portfolio returns; with constraint (1f) the
expected excess losses in the tail of the distribution, beyond VaR, are bounded by the parameter ϑ.
Financial optimization models with CVaR constraints are reported, for example, in [2, 4, 13, 14].
Alternatively, we could have opted to maximize the CVaR of portfolio returns and impose a mini-
mal target on expected return, as is done in Topaloglou et al. [17]. We chose this formulation as it
is more natural to interpret the impact of estimation errors in stochastic inputs on the expected
portfolio return, rather than on the value of a risk measure.

As it was shown in Topaloglou et al. [17, 18] the monthly variations of exchange rates — also
the returns of several stock indices — exhibit skewed and fat-tailed distributions. The use of the
CVaR metric is appropriate in the context of the international portfolio management model, as it
can accommodate the skewed and leptokurtic distributions of the stochastic inputs (see Table 3 in
the Appendix). As we noted earlier, many other portfolio management models involve securities
with asymmetric and leptokurtic return distributions, for which a CVaR model would be suitable.

3 Scenario generation

We used the method of Høyland et al. [7] to generate scenarios of asset returns and spot currency
exchange rates. The method generates a set of discrete scenarios for the random variables so that
the first four moments of the marginal distributions (mean, standard deviation, skewness and
kurtosis), as well as the correlation coefficients match specified targets. We estimate the target
values for these statistics from historical data. However, this is not a prerequisite for the scenario
generation procedure. We could, as easily, use subjective estimates for the target statistics, as
well as target values determined with alternative estimation procedures.

The moment-matching method allows full control of the moments when generating scenarios.
This capability is essential for the purposes of this study. To investigate the impacts on the
model of variations in the values of some moment of the random variables, we need a procedure
that can generate scenarios effected only in terms of the moment studied, while keeping all other
statistical properties of the stochastic inputs unchanged. The moment-matching method provides
this capability.

3.1 Data

The data for the stock indices were obtained from the Morgan Stanley Capital International,
Inc. database (www.mscidata.com). The data for the bond indices and the currency exchange
rates were collected from DataStream. All time series have a monthly time-step and cover the
period from January 1990 to April 2001 (i.e., a total of 136 monthly observations). The statistical
properties of these data series are reported in Tables 3 and 4 in the Appendix.

3.2 Assessment of the scenario generation method

In Section 4, we investigate the behavior of the CVaR model with respect to the number of scenarios
and with respect to mis-specifications in the statistical properties of stochastic inputs. To ensure
the reliability of the results, however, we must first show that the scenario generation method
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used does not influence the results by causing instability of the solutions. That is, if the solutions
change for different scenario sets then the results of section 4 would be suspect.

Ideally, we would like to determine that the scenario generation procedure can effectively
produce robust solutions with respect to the true distribution of the random variables. This is
not an attainable goal as the true distribution is not observable. Hence, we assess the scenario
generation method in terms of its ability to closely approximate a benchmark distribution, and
the stability of the results with respect to the benchmark. It is important that the benchmark
distribution is provided exogenously, that is, it is not generated by the same method which we
are testing.

We use as benchmark a discrete distribution (scenario set) generated by a method based on
principal component analysis as described in Topaloglou et al. [17]. The benchmark distribution
has 15, 000 scenarios that jointly depict the co-variation of the 15 random variables in the inter-
national portfolio management problem. We note that the scenarios of the benchmark tree are
not equiprobable. From the benchmark scenario set, we compute the moments and correlations
of the random variables. We use these values as the target statistics to match with the scenario
generation procedure.

First, we verify that moments of the random variables in the scenarios sets that we gener-
ate match the target values. We also check that the generated scenario sets reproduce other
distributional characteristics (e.g., the entire marginal distributions).

Matching marginal distributions

The easiest to check is a match of the marginal distributions. We generated scenario sets ranging
in size from 250 to 5, 000 scenarios. For each set we determined the marginal distributions of
the random variables from generated scenario sets and compared them to the corresponding
distributions from the benchmark. The comparison in the case of the US stock index (Stk.USA)
is depicted in Figure 1. The reproduction of the marginal distributions of the remaining random
variables is quite similar.

the whole CDF detail of the lower tail

min
0.01
0.05
0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90
0.95
0.99
max

-0.25 -0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2  0.25

return

data

250 sc.

500 sc.

1000 sc.

2500 sc.

5000 sc.
min

0.01

0.05

0.10

-0.2 -0.15 -0.1 -0.05

return

data

250 sc.

500 sc.

1000 sc.

2500 sc.

5000 sc.

Figure 1: Match of the distribution function for the US stock index. Comparison of the distri-
bution function for the monthly returns of the US stock index in the benchmark (data) and in
generated scenarios sets of different size. The scale of the vertical axis is not linear, the two outer
intervals are prolonged.

We observe that even with moderate-size scenario sets (> 250 scenarios) we can closely re-
produce the marginal distributions from the 1st to the 99th percentile. At the extreme tails
the distribution is not as accurately matched unless a sufficiently large number of scenarios is
generated. This is understandable, as we should expect more samples in the tails as the number
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of scenarios increases.
The desired degree of matching the distributions depends on the decision model in which the

scenarios will be used. For example, if we are to apply a mean-variance model then the accuracy
of match at the tails will not make any difference, as long as the first two marginal moments and
the correlations are matched. A close match of the tails becomes relevant for the CVaR model
which is concerned with the tail of the portfolio’s return distribution.

The match of the marginal distributions of the random variables is illustrative. Yet, it is not
sufficient, even though the generated scenario sets also match the desired correlations as well. We
need to establish that the portfolio optimization model produces stable results regardless of the
specific scenario set generated in any given run — i.e., that it is stable with respect to sample.
Evidently, scenario sets of sufficiently large size are needed to ensure such stability. We need to
test jointly the scenario generation method and the optimization model in order to verify that
the scenario generation method does not cause instability of the solutions.

Joint stability test of scenario generation and the CVaR model

We generate 25 scenario sets of a given size, each matching the moments and correlations of the
benchmark distribution. We solve the optimization model with each scenario set and record the
optimal expected portfolio return. The confidence level in all tests is α = 0.95; thus, CVaR is the
expected return for the 5% worst scenarios. The bound on CVaR is ϑ = −1%. As the constraint
(1f) is always active, the CVaR of portfolio returns is always at its minimal value (−1%) at the
optimal solution; thus, the expected losses over the 5% worst scenarios are 1%.

As stochastic programs tend to have multiple optimal or near-optimal solutions, we study the
stability in terms of the optimal value; we do not compare the optimal portfolio compositions.
We then simulate all the solutions on the benchmark distribution and record the out-of-sample
values of both the expected return and CVaR.

As in [12] we examine two types of stability:

In-sample stability: The solutions should not vary across scenario sets of the same size. We
examine the in-sample variation of the optimal values (expected return) across the 25 sce-
nario sets of a given size; ideally these should be equal.

Out-of-sample stability: We examine the variation of the expected portfolio returns and CVaR

values obtained when the solutions are simulated on the benchmark distribution. These out-
of-sample values should ideally be equal for all scenario sets. They should also be equal to
the in-sample values.

The two notions of stability are not equivalent. We can have in-sample stability without out-
of-sample stability. Consider, for example, a case in which all the scenario sets are identical but
incorrect in comparison to the benchmark. On the other hand, we can have alternative scenario
sets for which the model yields the same optimal solution. Then the in-sample objective values
could differ for different scenario sets, but the out-of-sample values would be equal.

Verifying out-of-sample stability in terms of a benchmark indicates that the model yields
robust solutions that do not vary with respect to sample. This is essential in this study as we
need to ensure that the variations in the solutions that are observed in the tests of the next
section are caused by the variations in the statistics of the inputs, and not by instability with
respect to sample. Hence, the purpose of our tests is to assess whether we can achieve both types
of stability.

Results of the tests are depicted in Figure 2. We see that as we increase the number of
scenarios to around 5, 000 we indeed achieve both in-sample and out-of-sample stability. Thus,
the scenario generation method is effective, in the sense that it does not cause instability in the
solutions of the CVaR model.
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Figure 2: Stability of the CVaR model with respect to the exogenous benchmark. The horizontal
axis shows the CVaR value, the vertical axis the expected portfolio return (monthly).

4 Sensitivity tests of the CVaR model

This section studies the sensitivity of the CVaR model with respect to mis-specifications in the
statistics of stochastic parameters. Again we need a benchmark as a reference. Here we calibrate
the scenario generation method using the statistical properties estimated from historical market
data, as reported in Tables 3 and 4; all scenario sets in the following tests are generated so as to
match these target statistics. First, we generate a benchmark with 20, 000 scenarios. This scenario
set is sufficiently large (according to the findings of the previous section), to ensure both in-sample
and out-of-sample stability of the solutions, while it is still easily solvable so as to trace the
reference efficient frontier. The efficient frontier, depicting the tradeoff between expected portfolio
return and the CVaR risk metric, is obtained by repeatedly solving the parametric optimization
model for different allowable limits ϑ on CVaR.

To interpret the results of the tests, we must understand the source of differences between
the in-sample and out-of-sample expected portfolio return of a given portfolio. If the portfolio is
invested solely in domestic assets, the expected return would depend only on the portfolio com-
position and the means (expected values) of asset returns. The contribution of a foreign asset,
however, on the portfolio’s return depends on the product of the asset return (in its local cur-
rency) and the change of the exchange rate to the reference currency. When foreign investments
are present in a portfolio, the return depends on products of random variables; hence, the ex-
pected portfolio return depends not only on the means of the random variables, but also on their
covariances. Thus, for a given portfolio, the in-sample and the out-of-sample expected portfolio
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returns would be equal only if the random variables have the same means, standard deviations,
and correlations in the respective scenario sets (i.e., the test set and the benchmark). This condi-
tion is satisfied by construction in our scenario generation method as the random variables have
matching moments and correlations in the benchmark and in the test sets. Hence, a portfolio has
the same in-sample and out-of-sample expected return, but its CVaR value is different when it is
simulated on the benchmark scenario set in comparison to its value on a test set.

4.1 Finding a sufficient number of scenarios

Before proceeding to the sensitivity tests, we verify that we employ sufficiently large scenario sets
in our tests to ensure stability with respect to sample. That is, we must ensure that variations
observed in the model’s results stem from changes in the statistical properties of the stochastic
inputs and not from insufficiency of the scenario test sets. In the tests of section 3.2 we found
that at least 5, 000 scenarios were needed to attain both in-sample and out-of-sample stability
to an acceptable level. As the benchmark is now different we repeat the same tests here; the
statistics of both the benchmark as well as the test sets in this section were estimated from time
series of market data. The results of the tests are summarized in Figure 3. Again, we observe
that we need at least 5, 000 scenarios to ensure adequate stability of the CVaR model.

1000 scenarios 5000 scenarios

0.60%

0.65%

0.70%

0.75%

-1.6% -1.4% -1.2% -1.0% -0.8% -0.6%

eff. frontier
in-sample
out-of-sample

0.60%

0.65%

0.70%

0.75%

-1.6% -1.4% -1.2% -1.0% -0.8% -0.6%

eff. frontier
in-sample
out-of-sample

Figure 3: Stability of CVaR model with respect to the number of scenarios. The horizontal axis
shows the CVaR value, the vertical axis the expected portfolio return (monthly).

Some comments on the figures:

• The in-sample results always lie on a vertical line, as the CVaR value is always equal to
its minimal allowable limit ϑ at the optimal solution. The range of this line indicates the
in-sample variation of expected return with respect to scenario sets of a given size.

• As the in-sample values are computed on the respective scenario sets — and not the bench-
mark — they can cross the reference efficient frontier that is generated using the benchmark.

• Because the random variables have the same moments and correlations in the test sets and
in the benchmark, the in-sample and the out-of-sample expected portfolio returns are the
same for a given portfolio, as we explained at the start of this section. Only the CVaR values
of a portfolio change when it is simulated on the benchmark scenario set.

Table 1 presents measures of variation of expected portfolio returns for tests using scenario sets
of increasing size. Variations in expected return decrease monotonically with increasing number
of scenarios; this is a helpful consistency check.
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# of scenarios 250 500 1000 2500 5000 10000

standard deviation 0.010% 0.007% 0.005% 0.002% 0.002% 0.001%
range (max− min) 0.034% 0.026% 0.023% 0.009% 0.006% 0.003%

Table 1: Standard deviation and range of out-of-sample expected portfolio returns.

4.2 Effects of mis-specifications in statistical properties

In this section we test the sensitivity of the CVaR model with respect to mis-specifications in the
statistical properties of the stochastic inputs. Controlled errors are systematically introduced to
the target statistics (first four moments and correlations) of the random variables at the scenario
generation phase. Multiple scenario test sets are then generated to match the perturbed statistical
properties. Similar tests for the mean-variance model are presented in Kallberg and Ziemba [11]
and Chopra and Ziemba [6].

We quantify the induced errors by means of the following approach. We compute the moments
and correlations of the random variables based on subsets of our data set, using a moving time
window of 1/2 the size of the available time series. Thus, we obtain a series of plausible estimates
for the moments and correlations of the random variables. For each statistic, we take the interval
from the minimal to the maximal estimated value which we call the variation interval for the
corresponding statistic. These variation intervals for moments and correlations are reported in
Tables 5 and 6 in the Appendix. We term the value of the respective statistic, calculated on the
basis of the entire data set, the true value.

We define a δ-percent error in a statistical property as

true value+ ε δ
100 length(variation interval) , (2)

where ε is a random number from the uniform distribution on the interval [−1, 1]. With this
definition, the average absolute error is

1
2
δ

100 length(variation interval).

Note that this is different from the corresponding definition in Chopra and Ziemba [6]. There,
the δ-percent error was defined as true value

(
1 + ε δ

100

)
, ε ∈ N (0, 1). If we have a statistic (e.g.,

skewness or correlation) with a true value equal to zero, then this statistic would never be changed
if we introduced errors using the approach of Chopra and Ziemba; variations of statistics with
very small values would also be very small. For this reason, we chose to calculate controlled errors
by means of (2).

A potential problem when introducing random errors to statistical properties is that we may
specify a property, or a combination of properties, that is not feasible. For example, we may
end up with specifications that may violate the condition kurt > 1 + skew2, or we may specify
a correlation matrix that is not positive definite. When this happens, we simply discard these
particular specifications.

To test the impact of mis-specifications in each statistic we generate 100 scenario sets (with
5, 000 scenarios each) by randomly varying the value of the statistic. Every test proceeds as
follows:

i. For each random variable, perturb the selected statistic using (2).

ii. Generate a scenario set, matching the perturbed statistical properties.

iii. Solve the portfolio optimization model and record the expected portfolio return and the
value of CVaR at the optimal solution.

iv. Simulate the solution on the benchmark — which was generated with unperturbed statis-
tics — estimating the expected portfolio return and the value of CVaR.
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Results of the sensitivity tests

We ran tests for 10% and 25% errors (i.e., for δ = 0.10 and 0.25). In the case of errors in
marginal moments, we never obtained an infeasible specification. In the case of 25% errors in
correlations, however, many of the generated correlation matrices were not positive definite, and
were discarded and replaced. The discarded cases resulted from samples that introduced the
larger levels of errors, i.e., ε ≈ ±1. As the large error instances were discarded, the effective
errors in correlations in this case are somewhat smaller.

The results of the tests with parameter settings α = 0.95 and ϑ = −1.0% are shown in Figures
4, and 5 for 10% and 25% errors, respectively. We observe that the larger levels of error, in any
statistic, have a discernibly higher impact on the expected portfolio return. Estimation errors
in the means clearly exhibit the highest impact on the solutions, followed by errors in standard
deviations.

To examine the effects of estimation errors at different levels of risk aversion, we repeated the
tests at different levels of the parameters α and ϑ; the combination of these parameters relates
to the level of risk aversion. Increasing values of the percentile level α refer to more extreme
tails of the return distribution. The parameter ϑ controls the allowable mass in the tail of the
distribution; thus, lower values of this parameter (in absolute terms) constrain more tightly the
size of the tail (beyond the percentile level specified by α), and reflect higher risk aversion. Results
of the tests are summarized in Table 2.

benchmark Range of out-of-sample expected return estimates
expected caused by estimation errors in respective statistics

α ϑ return mean stdev skew kurt corr

1
0
%

e
rr
o
r 95% -0.5% 0.601% 0.065% 0.035% 0.031% 0.024% 0.022%

95% -2.0% 0.782% 0.045% 0.025% 0.022% 0.020% 0.027%

99% -2.0% 0.707% 0.060% 0.034% 0.030% 0.022% 0.031%

2
5
%

e
rr
o
r 95% -0.5% 0.601% 0.255% 0.073% 0.058% 0.039% 0.031%

95% -2.0% 0.782% 0.247% 0.058% 0.028% 0.016% 0.039%

99% -2.0% 0.707% 0.247% 0.057% 0.034% 0.036% 0.043%

Table 2: Sample ranges (max − min) of out-of-sample expected (monthly) portfolio return esti-
mates caused by estimation errors in statistics of the stochastic inputs.

Table 2 summarizes the impacts of estimation errors in statistics of the stochastic inputs
to the CVaR model. It reports the sample ranges of out-of-sample expected (monthly) return
estimates when errors were introduced to the respective statistics. For all statistics, the impact
of errors increases with the level of the error; the larger rate of increase results from errors in the
means, followed by errors in the standard deviations. We assess the impacts of estimation errors
in statistics of the stochastic inputs in terms of the variation they induce in the out-of-sample
estimates of expected portfolio return.

We summarize our observations on the results as follows:

• In all tests, the CVaR model is most sensitive to errors in the means of the stochastic inputs.
The mean is by far the most important statistical property to estimate accurately, as errors
in the means of the random variables have the most significant impact on the results —
about 2 to 10 times higher than the effect of errors in any other statistical property.

• After errors in the means, mis-specifications of standard deviations have the next most
important impact on the out-of-sample estimates of expected portfolio return — about 2
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Figure 4: Stability of CVaR model with parameters α = 95%, ϑ = −1%; 10% estimation errors
in the respective statistics. The horizontal axis shows the CVaR value, the vertical axis the expected

monthly return.

to 5 times lower than the impacts of the means. Next is the impact of estimation errors in
values of skewness — about 2 to 9 times lower than the impacts of the means — followed
by the impact of errors in the estimates of kurtosis — about 3 to 12 times lower compared
to the impacts of the means. The effects of estimation errors in correlations are between
those of the standard deviations and skewness.3

3We note that the effects of mis-specifications in correlation values at 25% errors are underestimated. In these
tests, samples with the larger levels of errors in correlations yielded non-positive definite correlation matrices and
were discarded. Hence, the effective estimation errors in this case are somewhat lower, and the corresponding
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Figure 5: Stability of CVaR model with parameters α = 95%, ϑ = −1%; 25% estimation errors
in the respective statistics. The horizontal axis shows the CVaR value, the vertical axis the expected

monthly return. The graph for errors in means has a bigger scale on the vertical axis.

• Errors in the values of kurtosis have a detectable and non-negligible influence on the results
of the CVaR model, though their impact is lower in comparison to that of the other statistics.

• For all marginal moments, the effect of estimation errors seems to increase for more risk
averse settings of the model’s parameters, i.e., for smaller allowable tails (as controlled by
the parameter ϑ).

• The mean and the correlations are the only statistics whose mis-specifications result in

effects are underestimated.
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portfolios that deviate significantly from the efficient frontier. Errors — especially when
they are relatively small — in the other statistics seem to result in portfolios with different
CVaR values, which are, however, still close to the efficient frontier.

The results demonstrate that estimation errors in higher-order moments of stochastic inputs
do indeed affect in measurable ways portfolio management models that use the CVaR risk measure.
The results imply that it pays to devote care and effort so as to accurately estimate the values
of higher-order moments when employing risk measures concerned with the tails of the return
distribution in portfolio management models.

5 Conclusions

We tested a risk management model for international portfolios based on the CVaR risk metric.
We employed a scenario generation procedure based on principles of moment matching. We
showed that this scenario generation method is effective and “unbiased”, in the sense that it can
closely reproduce the characteristics of a desired distribution and it leads to stable solutions of
the portfolio optimization model.

We investigated the sensitivity of the CVaR model with respect to errors introduced to the
statistical properties of stochastic inputs, as represented in discrete scenario sets. The statistical
properties investigated included the first four marginal moments and the correlations of the
random variables (assets returns and spot currency exchange rates). The tests quantify the
relative effects of errors in these statistics on the model’s results. The results confirm that
the mean value of the random variables is the most important statistic to accurately estimate;
the CVaR model exhibits high sensitivity to mis-specifications of the means. But, unlike the
mean-variance model, the CVaR model shows sensitivity to errors in the estimates of higher-order
moments as well. Errors in the standard deviation, correlations and skewness of the random
variables have considerable impact on the model’s results, in this order of importance. Estimation
errors in the values of kurtosis have lesser, yet non-negligible, effects.

When assessing the potential effects of estimation errors in statistical properties, we should
have a sense of the magnitude of such errors in practice. Much more care is exercised in generating
reliable estimates of the means, variances and covariances of random financial variables, and
more effective tools are available for their estimation, in comparison to higher-order moments.
This is because the mean-variance model continues to be the primary paradigm for portfolio
management, and because the importance of the first two moments is well understood. The need
for accurate estimates of higher-order moments is often overlooked as their potential impact in
portfolio management models is not as well understood and appreciated. This study sheds some
light in this respect, by indicating the relative importance of accurate estimates of higher-order
moments for random variables in risk management models that employ risk measures tailored to
control the tails of the portfolio’s return distribution.
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Appendix: Properties of the data

Tables 3 and 4 present the first four marginal moments and the correlation matrix of the monthly
differentials in the historical market data of the random variables (returns of the stock and
bond indices, as well as of the spot currency exchange rates). These statistics constitute the
targets matched in the scenario sets used in the empirical tests of section 4. Note that the
random variables have skewness ranging from −1.00 to 1.36 and kurtosis ranging from 2.78 to
7.39. The historical observations indicate that the random variables in the international portfolio
management problem are not normally distributed — Jarque-Berra tests [8] reject the normality
hypothesis for these data (see, Topaloglou et al. [18]). This was a primary factor behind modelling
choices in this study. That is,

1. We adopted the CVaR risk measure as it is suitable to accommodate higher-order moments
and measures risk in the tail of the portfolio’s return distribution.

2. We employ a scenario generation method based on principles of moment-matching as it
provides full control of the moments in the generation of scenarios.

Stk.USA Stk.UK Stk.Ger Stk.Jap Bnd1.USA Bnd7.USA Bnd1.UK
Mean 0.01296 0.01047 0.01057 -0.00189 0.00553 0.00702 0.00718
StDev 0.04101 0.04150 0.05796 0.06184 0.00467 0.01620 0.00688
Skew -0.47903 -0.19051 -0.47281 0.04768 -0.18341 -0.07482 1.36036
Kurt 3.76519 3.11399 4.11970 3.62119 2.77801 3.23974 7.38764

Bnd7.UK Bnd1.Ger Bnd7.Ger Bnd1.Jap Bnd7.Jap ExR.UK ExR.Ger ExR.Jap
0.00894 0.00535 0.00671 0.00318 0.00622 -0.00077 -0.00152 0.00179
0.01884 0.00455 0.01368 0.00506 0.01681 0.02801 0.03021 0.03607
0.12127 0.55214 -0.87820 0.54803 -0.53562 -0.99772 -0.25505 1.09286
3.52858 5.13927 4.42483 4.28775 5.23964 6.51592 3.80887 6.75996

Table 3: Moments of monthly differentials of the historical market data.

Tables 5 and 6 present the lengths of the variation intervals for the moments and correlations.
The variation intervals are defined and used in the model sensitivity tests in Section 4.2.
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Stk.USA Stk.UK Stk.Ger Stk.Jap Bnd1.USA Bnd7.USA Bnd1.UK
Stk.UK 0.6651
Stk.Ger 0.5573 0.5911
Stk.Jap 0.3568 0.3601 0.3429

Bnd1.USA 0.1965 0.0844 -0.0578 -0.0105
Bnd7.USA 0.2656 0.1150 0.0027 0.0205 0.8768
Bnd1.UK 0.0853 0.4014 0.0276 0.0018 0.3600 0.3176
Bnd7.UK 0.2258 0.5075 0.1714 0.0392 0.4314 0.4815 0.8175
Bnd1.Ger 0.0556 0.2642 0.0536 0.0081 0.3466 0.3574 0.6121
Bnd7.Ger 0.1687 0.3066 0.2326 0.0408 0.4385 0.5453 0.4639
Bnd1.Jap 0.0557 0.0814 -0.0005 0.0226 0.2513 0.2186 0.3274
Bnd7.Jap 0.0463 0.0493 0.0140 -0.0029 0.2831 0.3235 0.1815
ExR.UK 0.0247 -0.2177 -0.1062 0.1162 0.2422 0.1911 -0.2811
ExR.Ger -0.0643 -0.2263 -0.2651 -0.0828 0.2716 0.2129 -0.1429
ExR.Jap 0.1126 0.0945 -0.1414 0.0475 0.1319 0.0975 0.0927

Bnd7.UK Bnd1.Ger Bnd7.Ger Bnd1.Jap Bnd7.Jap ExR.UK ExR.Ger
Bnd1.Ger 0.5688
Bnd7.Ger 0.6627 0.7779
Bnd1.Jap 0.2645 0.4008 0.2853
Bnd7.Jap 0.2100 0.3025 0.3093 0.7827
ExR.UK -0.1588 -0.2227 -0.0948 0.0145 0.0262
ExR.Ger -0.1332 -0.0638 -0.0598 0.1021 0.1375 0.6949
ExR.Jap 0.0680 0.0825 -0.0072 0.0334 -0.0122 0.2680 0.4236

Table 4: Correlations of monthly differentials of the historical market data.

Stk.USA Stk.UK Stk.Ger Stk.Jap Bnd1.USA Bnd7.USA Bnd1.UK
Mean 0.00946 0.00764 0.01836 0.01055 0.00166 0.00435 0.00351
StDev 0.02035 0.01217 0.02153 0.02321 0.00171 0.00293 0.00485
Skew 1.62256 0.8916 1.0513 0.54337 0.79795 0.62041 2.32511
Kurt 3.87492 1.82066 2.56178 0.99143 1.2739 0.891 7.2035

Bnd7.UK Bnd1.Ger Bnd7.Ger Bnd1.Jap Bnd7.Jap ExR.UK ExR.Ger ExR.Jap
0.00591 0.00366 0.00284 0.00433 0.00487 0.0057 0.0107 0.01108
0.00952 0.00174 0.00262 0.00249 0.00351 0.01533 0.00954 0.0132
0.78578 1.18387 0.55199 1.21049 1.48868 1.62235 1.22593 1.55678
1.04044 3.12805 2.33646 2.18066 5.13353 6.35287 2.086 4.0713

Table 5: Lengths of the variation intervals of moments.
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Stk.USA Stk.UK Stk.Ger Stk.Jap Bnd1.USA Bnd7.USA Bnd1.UK
Stk.UK 0.28245
Stk.Ger 0.41613 0.1814
Stk.Jap 0.33692 0.27907 0.38272

Bnd1.USA 0.48044 0.43639 0.3613 0.21907
Bnd7.USA 0.43832 0.44669 0.37637 0.28547 0.07029
Bnd1.UK 0.25762 0.63827 0.47922 0.29948 0.32842 0.3272
Bnd7.UK 0.18449 0.53845 0.3226 0.18788 0.30047 0.29125 0.10638
Bnd1.Ger 0.32837 0.53526 0.44861 0.20951 0.23945 0.21754 0.23587
Bnd7.Ger 0.28289 0.4632 0.52714 0.18048 0.25918 0.25712 0.1254
Bnd1.Jap 0.39658 0.30524 0.38022 0.47467 0.35529 0.34925 0.42718
Bnd7.Jap 0.53725 0.42657 0.43082 0.53627 0.1201 0.19085 0.34086
ExR.UK 0.32612 0.2294 0.23331 0.34925 0.37893 0.34466 0.48376
ExR.Ger 0.34274 0.23943 0.30395 0.41129 0.4128 0.42665 0.49304
ExR.Jap 0.35474 0.3389 0.22861 0.29166 0.23326 0.21832 0.19624

Bnd7.UK Bnd1.Ger Bnd7.Ger Bnd1.Jap Bnd7.Jap ExR.UK ExR.Ger
Bnd1.Ger 0.18615
Bnd7.Ger 0.19871 0.08346
Bnd1.Jap 0.39379 0.41627 0.31011
Bnd7.Jap 0.39649 0.35563 0.26651 0.11535
ExR.UK 0.41516 0.57385 0.39195 0.26009 0.36195
ExR.Ger 0.43402 0.33271 0.3127 0.22496 0.23136 0.34187
ExR.Jap 0.18262 0.24788 0.25119 0.44653 0.5184 0.32304 0.27371

Table 6: Lengths of the variation intervals of correlations.
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