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The Computational Infrastructure for Operations Research (COIN-OR, or simply COIN) is a col-
lection of open-source projects developing software for the operations research (OR) community. Ac-
cording to the COIN-OR web page1, the goal of the project is “to create for mathematical software
what the open literature is for mathematical theory”. Most of the projects are released until the Com-
mon Public License (CPL), an open-source software license published by IBM and approved by the
Open Source Initiative and Free Software Foundation (but not compatible with GPLv2). The COIN-
OR project is managed by a non-profit educational and scientific foundation called The COIN-OR
Foundation, Inc.

At the moment of writing, the COIN-OR web site lists 29 projects covering many different aspects
of OR – and there are several more projects that are not listed, because they are in an early stage of
development. The current projects include solvers for most of the common type of problems: LP,
(M)IP, NLP (convex and global) and even MINLP (Mixed Integer NonLinear Programming), all freely
available. Many of the solvers can be used from withing AMPL and GAMS (the latter using the
GAMSlinks project2).

In the rest of this note, we will focus on the following two projects: SMI (a stochastic modeling
interface) and FlopC++ (an algebraic modeling language embedded in C++). Like most of the COIN-
OR projects, also SMI and FlopC++ are written in C++. While it is fully possible to use the above
mentioned stand-alone solvers without any knowledge about C++, some level of programming experi-
ence is required to understand the examples presented in this note.

It is also important to realize that all the presented example show just one possible way of doing
things; there are other ways, some of which are likely to be better than the presented one. This is
especially true in the cases where we mix several approaches in one code, to show the different possi-
bilities, something one would never do in a real code. In addition, we would normally have the object
descriptions in separate files and use header files, something we omitted here for the sake of brevity.

1 General concepts

Before we can proceed to the package description, we need to explain some underlying COIN-OR
concepts, that are used throughout the COIN-OR collection.

1.1 Obtaining and installation

The easiest way to download and test some of the projects is to use a precompiled binaries, provided by
the CoinBinary project3. Unfortunately, the two projects we are interested in are not (yet) supported,
∗Molde University College, P.O. Box 2110, NO-6402 Molde, Norway; email: michal.kaut@himolde.no.
1See http://www.coin-or.org/
2See https://projects.coin-or.org/GAMSlinks
3See https://projects.coin-or.org/CoinBinary
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so we have to compile the libraries manually.
While it is possible to directly download all the source files4, the recommended way of obtaining

the sources is to use Subversion5 (SVN). This way, one always gets all the dependencies of the package
as well. For Windows users, the easiest way is to use TortoiseSVN6, which integrates into the Windows
Explorer so there is no need to know the SVN commands. More info about obtaining the source code
via SVN can be found in the COIN-OR FAQ page7.

There are two ways of compiling and installing the COIN-OR projects, depending on the platform
used. On POSIX-compatible systems (UNIX, Linux and Windows using Cygwin8 or MSYS9), most
of the projects are built and installed by issuing the following sequence of commands from the root
directory:

1. ./configure

2. make

3. maketest

4. makeinstall

Eventual deviations from the procedure are given at the projects’ web pages. The projects can be further
configured, for example to use external solvers (like CPLEX or GLPK), to specify a build directory, or
to build a debug version of the libraries. More information can be found in the “user configure” section
of the BuildTools project10.

For users of Microsoft Visual Studio, many projects—including the two we are interested in—
provide project/solution files in their distributions. For more information, see the MSVisualStudio
project11.

All the presented procedures and results have been tested on Windows using MSYS and MinGW12,
a Windows port of the GNU Compiler Collection (gcc), with gcc versions 3.4.5 and 4.2.1. Note that
MSYS was used only to configure and build the COIN-OR projects. All the presented codes have been
written in an IDE (integrated development environment), in our case Code::Blocks13, an open source,
cross platform IDE for C++.

1.2 Documentation

Most—if not all—COIN-OR packages are configured to generate Doxygen14 HTML documentation,
by issuing make doxydoc from the installation directory. Many projects have the Doxygen docu-
mentation also available at their project web pages. Since the Doxygen documentation includes all the
definitions and syntax, often with additional comments, we will not explain the syntax here.

In addition to the Doxygen documentation, some projects have some kind of user documentation
and/or tutorials at their web pages. Most projects also include some examples, which might be the best
way of learning the basic usage.

4See http://www.coin-or.org/download/source/
5See http://subversion.tigris.org/
6See http://tortoisesvn.tigris.org/
7See http://www.coin-or.org/faqs.html#ObtainSrcCode
8See http://www.cygwin.com/
9See http://www.mingw.org/msys.shtml

10See https://projects.coin-or.org/BuildTools/wiki/user-configure
11See https://projects.coin-or.org/MSVisualStudio
12See http://www.mingw.org/
13See http://www.codeblocks.org/
14See http://www.doxygen.org/
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1.3 COIN-OR Open Solver Interface (OSI)

OSI15 is a “uniform API for interacting with callable solver libraries” for LP and (M)IP solvers. This
allows the user to write a solver-independent code, where changing the solver can be as easy as chang-
ing two lines in the code. In addition to the COIN-OR solvers, OSI includes interface for the following
solvers:

CPLEX http://www.ilog.com/
FortMP http://www.optirisk-systems.com/
GLPK http://www.gnu.org/software/glpk/16

MOSEK http://www.mosek.com/
OSL no longer developed

SoPlex http://www.zib.de/Optimization/Software/Soplex/
Xpress-MP http://www.dash.co.uk/

For each of the above solvers, there is an associated OSI class derived from an abstract base class
OsiSolverInterface. Hence, to use CPLEX, we create an object of a derived class called
OsiCpxSolverInterface. If we later decide to switch to, for example, CLP (the COIN-OR
Linear Programming solver), all we need to do is to change the class to OsiClpSolverInterface
and include an appropriate header file.

The OsiSolverInterface class provides all the methods needed for building an LP/MIP
model and communicating with solvers: adding and deleting of rows and columns, setting bounds,
solving and resolving, accessing the solution, etc.

2 Introducing the libraries

2.1 SMI

SMI stands for Stochastic Modeling Interface and is meant to be an interface for stochastic-programming
models. According to the project web page17, the implemented features include

• a scenario tree structure for multiperiod stochastic data

• an implementation of a Stochastic MPS (SMPS) reader

• interfaces for generating scenario trees from paths and from discrete random variables

• generating an OSI object with the deterministic equivalent problem

• parsing the solutions by stage and scenario.

The most important missing feature is a stochastic solver; so far, the only way to solve the stochastic
program represented by an SMI object is to create an OSI object with its deterministic equivalent and
use some of the OSI solvers to solve it. Despite this obvious drawback, there are several scenarios
where using SMI brings some advantage over using deterministic tools:

• Since SMI contains an SMPS reader, we can easily write a solver for stochastic programs in
SMPS format.

• SMI provides a very natural way of building a stochastic program, since it operates with stages
and scenarios.

• Even if we can only solve a deterministic equivalent problem, we can still use SMI to give us
access to the solution by stage and scenario.

15See https://projects.coin-or.org/Osi/
17See http://www.coin-or.org/projects/Smi.xml
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The structure of an SMI object is closely related to the SMPS format: we start by creating a core
model and then associate its variables and constraints to stages. The scenario tree is then created in
an SMPS-like fashion by adding scenarios one by one, specifying their parent scenario, the stage they
branch from the parent scenario and the data in which they differ from it. Note that there SMI provides
also different ways of creating the scenario tree, by they are not covered here.

Main classes

The most important classes in SMI are:

SmiCoreData Class representing the deterministic core problem, including the stage information on
variables and constraints.

SmiScnModel “Scenario Model Class” - the main class representing the stochastic model. The most
important methods are:

readSmps Reads the model from three SMPS files (core, time, stoch).

generateScenario Adds one scenario, using a previously created SmiCoreData object.

processDiscreteDistributionIntoScenarios Generate scenarios from a discrete
distribution.

getObjectiveValue Gets the current objective function value in a given scenario.

getScenarioProb Gets the probability of a given scenario.

getLeafNode Gets the leaf node of a given scenario.

getRootNode Gets the root node of the scenario tree.

SmiScnNode Part of the model represented by one node of the scenario tree. The getLeafNode
and getRootNode methods of SmiScnModel return a reference to SmiScnNode.

For a complete list and syntax, please consult the Doxygen documentation18.

2.2 FlopC++

FlopC++ stands for Formulation of Linear Optimization Problems in C++ and is an algebraic mod-
elling language implemented as a C++ library. In other words, it makes it possible to specify a linear
model in C++ in a way which is very close to the modelling languages like AMPL or GAMS, with the
additional advantage of having the full strength of the C++ language for manipulating (solving, updat-
ing, resolving) the model once it has been created. Or, as the FlopC++ web page19 puts it, “FLOPC++
can be used as a substitute for traditional modelling languages, when modelling linear optimization
problems, but its principal strength lies in the fact that the modelling facilities are combined with a
powerful general purpose programming language. This combination is essential for implementing ef-
ficient algorithms (using linear optimization for subproblems), integrating optimization models in user
applications, etc.”

18See http://www.coin-or.org/Doxygen/Smi/annotated.html
19See https://projects.coin-or.org/FlopC++
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Main classes

In the case of FlopC++, we can afford to be quite brief in the description of the classes, as there is
more documentation than in the case of SMI: the Doxygen20 documentation includes quite a lot of
information about all the main classes and there is also a “user documentation” page21 explaining the
main concepts. As a result, we only list the main classes with a selection of methods here:

MP_model with methods minimize, getStatus, etc.

MP_set with methods cyclic, size, etc.

MP_subset with methods insert, size, etc.

MP_index , a class representing an index;

MP_data with methods value, initialize, etc.

MP_variable with methods integer, binary, level, etc. and attributes upperLimit and
lowerLimit.

MP_constraint with attributes left, right, sense, etc.

MP_expression , a class representing a linear expression.

A careful reader may notice that the class MP_subset is not listed in the “Public Interface” group.
Indeed, this class is marked as “for internal use”, but we list it here because we find it very useful. How-
ever, there is a good reason the class is not meant for public use: one has to very careful about indexing.
We will thus demonstrate its use on a small example, presented in Figure 1. There, we construct a set

9 int i;
10 MP set A(5); // sets A = {0,...,4}
11 MP index a, b;
12 MP subset<1> B(A);
13 B.insert(2); B.insert(3); // sets B = {2, 3}
14 B.display("set B");
15 MP data D(B); // data indexed on B
16 for (i = 0; i < B.size(); i++)
17 D(i) = 5*(i+1); // sets D to 5 and 10
18 D.display("data D");
19

20 for (i = 0; i < A.size(); i++) // print indices of elements of A in B
21 cout << "B(" << i << ") = " << B(i) << endl;
22

23 MP variable x(A); // variable defined on set A
24

25 MP expression objF; // linear expression (later used as objective)
26 objF = sum(B, D(B) * x(B));
27 objF = sum(B(A), D(B) * x(A));
28 objF = sum(B(a), D(a) * x(a));
29 objF = sum(B(a), D(B(a)) * x(a));
30 objF = sum(B(a), D(B) * x(a));

Figure 1: Example demonstrating the use of subsets in FlopC++.

A with 5 elements {0, . . . ,4} and its subset B = {2,3}. This is confirmed by the output from line 14:
20Available at http://www.coin-or.org/Doxygen/FlopC++/; The best starting place is probably the “Public

Interface” modul at http://www.coin-or.org/Doxygen/FlopC++/group__PublicInterface.html
21See https://projects.coin-or.org/FlopC++/wiki/DocumentationPage

5

http://www.coin-or.org/Doxygen/FlopC++/
http://www.coin-or.org/Doxygen/FlopC++/group__PublicInterface.html
https://projects.coin-or.org/FlopC++/wiki/DocumentationPage


set B
2
3

Then we define a data object D indexed on the subset B and set its values to {5,10}. The output from
line 18 is then

data D
0 5
1 10

Note that the indices are not 2 and 3, i.e. the data object “does not know” about the elements of B. Now,
let us have a look at lines 20–21 and their output:

B(0) = -2
B(1) = -2
B(2) = 0
B(3) = 1
B(4) = -2

This demonstrates nicely the meaning of B(i): it is the index of element i ∈ A in the set B, with “-2”
meaning i /∈ B. In other words, the output means that B has two elements, 2 and 3.

The rest of the example illustrates the importance of correct indexing an MP_expression. We
start by defining a variable x ∈ A and an MP_expression object objF. The goal is to set this to
a sum of D(a)*x(a) for all a ∈ B, i.e. 5x(2)+10x(3). The example includes five different ways
of creating the formula, two of which are wrong (but they do, unfortunately, compile and even run,
they just produce wrong results): the code at line 26 produces 5x(0)+10x(1). The reason is that we
index x on the set B, while it is defined on A. This is correct at l. 27, where we connect the two sets in
the first arguments of the sum and then index the data and the variable on the appropriate sets.

A possibly more readable alternative is to use an MP_index variable, but one has to be careful
also in this case. For example, the version on line 28 does not create any expression at all, because we
try to index D on an index a running over set A. There are (at least) two possible remedies, we can
either re-cast the index into set B as on l. 29, or simply use the index only for the set A, as on line 30.
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3 Formulation of the investment example

In this section, we formulate the investment example presented in Appendix ?? using the COIN-OR
libraries and check that we get the same solution. We start by using each of the libraries separately and
then show what can be gained by joining their powers.

3.1 Investment example using Coin-OR SMI

We will present the code piece-by-piece, introducing the objects and methods as we need them. The
first thing we need to do is to create an OSI object with the core model. This is implemented in method
create_det_model, presented in Figure 2. The OSI object is built step-by-step, starting with the
LP matrix A (lines 179–202), then right-hand side b (l. 204–207) and finally the objective function c (l.
209–210). Note that since the values of stochastic variables in the core do not really matter, we have
used the expected values, so we in fact get an OSI object representing the expected-value problem.

With this method, we can start building the main code, as shown in Figure 3. At the start of the
code, line 3 includes the main SMI header file, line 6 includes the header for OSI interface to the COIN-
OR solver CLP and line 7 defines a macro for the OSI object we are going to use in the code. Note that
lines 6 and 7 are the only ones that have to be changed if we want to use another solver.

Once we have the OSI representation of the core model, we only need the stage information for the
variables and constraints (l. 29–31), before we can create the SmiCoreData object representing the
core at line 34.

Once we have the core model, we can start building the stochastic model. All the data needed for
this are at lines 44–58 – note that this would normally be in a separate data file. The scenDataRet
matrix includes the scenario returns, where we only store returns at the nodes that differ from the
parent (in our case previous) scenario. The branchStage vector then includes the stages at which
each scenario branches from its parent; Note that this has to be equal to one for the first scenario. Once
we have all the data in place, we can build the SmiScnModel object with the complete stochastic
model, by adding scenarios one-by-one (l. 64–74). The only missing piece is the add_scenario
method, presented in Figure 4. The most important part of the method is the construction of a matrix
including all the elements that differ from the parent scenario. Just as in the core model, we specify
the matrix elements, using the [row,column,value] triplets. The row and column indices for
branching at stage 2 are specified by the arrays at lines 238–239. For branching at later stages, we just
use part of these arrays, with the starting index computed at line 240. The matrix of differences is then
created at lines 243–248.

The scenario is then added using the generateScenario method at lines 250–255. The four
null pointers represent respectively the vectors of column lower- and upper bounds, objective function
coefficients and row lower- and upper bounds that differ from the parent scenario. Since the scenarios
in our case differ only in the matrix A, these are empty vectors.

After the end of the code in Figure 3, we have a complete SMI object, so the only thing that remains
is to generate an OSI object with the deterministic equivalent, solve it and report some results. This is
quite easy to do, as illustrated in Figure 5.

Even if we use a deterministic solver, we can still get information about the solution on the scenario
tree, using the SMI object. This is illustrated in Figure 6, with a code that traverses the scenario trees by
scenarios and report scenario probabilities and objective values, plus the development of wealth from
the root to the leaf of each scenario.

This completes the code. Note that to build the code we need to link the following COIN-OR
libraries: Smi, OsiClp, Clp, Osi, CoinUtils. The content of the first four libraries should be clear
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177 void create det model(OsiSolverInterface &modelOSI)
178 {
179 /* Matrix A, using the CoinPackedMatrix (sparse matrix) format
180 Non-zero elements given by three vectors: row and column indices + values
181 (not the most efficient way, but easy to read) */
182 int rowIndx[] = { // Row indices of the elements
183 0, 0,
184 1, 1, 1, 1,
185 2, 2, 2, 2,
186 3, 3, 3, 3
187 };
188 int colIndx[] = { // Column indices of the elements
189 0, 1,
190 0, 1, 2, 3,
191 2, 3, 4, 5,
192 4, 5, 6, 7
193 };
194 double elem[] = { // Values of the non-zero elements (expected value problem)
195 1, 1,
196 -1.155, -1.150, 1, 1,
197 -1.123, -1.148, 1, 1,
198 -1.108, -1.140, -1, 1
199 };
200 CoinBigIndex nmbElem = 14; // Number of non-zero elements
201 bool storeByCols = false; // Internal parameter, should be set to false
202 CoinPackedMatrix A(storeByCols, rowIndx, colIndx, elem, nmbElem);
203

204 // Bounds for variables are not needed, as the default is [0,inf]
205 // Bounds on the rows, i.e. RHS (equality constraints, so LB=UB)
206 double rowLB[] = {55, 0, 0, -80};
207 double rowUB[] = {55, 0, 0, -80};
208

209 // Objective function
210 double objCoef[] = {0, 0, 0, 0, 0, 0, 1.3, -1.1};
211

212 // Load the problem to the provided OSI handle
215 modelOSI.loadProblem(A, NULL, NULL, objCoef, rowLB, rowUB);
223 }

Figure 2: Method create_det_model for the SMI-based approach. Line numbers correspond
to the complete source file, the skipped line numbers are lines with extra comments, tests
or output.

by now, the last one includes many general COIN-OR objects, for example the sparse matrix object
CoinPackedMatrix. If we want to use another solver, the OsiClp and Clp libraries have to be
replaced accordingly.
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3 #include "SmiScnModel.hpp"
4

5 // Change these two lines to use a different solver
6 #include "OsiClpSolverInterface.hpp"
7 #define OSI SOLVER INTERFACE OsiClpSolverInterface
8

9 using namespace std;
10

22 int main()
23 {
24 // First, we build the CORE problem, i.e. the deterministic version
25 OSI SOLVER INTERFACE detModel;
26 create det model(detModel); // Create the deterministic model
27

28 // Next, add information about stages and create the SMI core data object
29 int nmbStages = 4; // Number of stages
30 int colStages[] = {0, 0, 1, 1, 2, 2, 3, 3}; // Stages of columns/variables
31 int rowStages[] = {0, 1, 2, 3}; // Stages of rows/constraints
32

34 SmiCoreData stochCore(&detModel, nmbStages, colStages, rowStages);
35

44 // Vector of the matrix elements that differ from the prev. scenario
46 double scenDataRet[][6] = {
47 { -1.25, -1.14, -1.21, -1.17, -1.26, -1.13 }, // scen. ending at node 7
48 { -1.07, -1.14 }, // scen. ending at node 8
49 { -1.07, -1.12, -1.25, -1.15 }, // scen. ending at node 9
50 { -1.06, -1.12 }, // scen. ending at node 10
51 { -1.06, -1.16, -1.15, -1.18, -1.05, -1.17 }, // scen. ending at node 11
52 { -1.06, -1.15 }, // scen. ending at node 12
53 { -1.06, -1.12, -1.05, -1.14 }, // scen. ending at node 13
54 { -1.06, -1.12 } // scen. ending at node 14
55 };
56 int branchStage[] = { 1, 3, 2, 3, 1, 3, 2, 3 }; // Branching stage
57 int nmbScen = 8; // Number of scenarios
58 double scenProb = 1.0 / nmbScen; // Scenarios’ probability
59

60 // Create the SMI stochastic model object
62 SmiScnModel stochModel;
63

64 for (SmiScenarioIndex sc = 0; sc < nmbScen; sc++) {
65 int parentScen = (sc == 0 ? 0 : sc - 1); // Parent scenario
67 add scenario(&stochModel, &stochCore, scenDataRet[sc],
68 branchStage[sc], parentScen, scenProb);
74 }

Figure 3: Start of the main code of the SMI-based approach.
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229 int add scenario(SmiScnModel *ptStochModel, SmiCoreData *ptCoreModel,
230 double *matrixElem, int brStage, int parScen, double prob)
231 {
237 // Row and column indices, for branching at stage 2
238 int rowDifIndx[] = {1, 1, 2, 2, 3, 3};
239 int colDifIndx[] = {0, 1, 2, 3, 4, 5};
240 int indxStart = 2 * (brStage-1); // Where to start reading the index vectors
241 int nmbElem = 6 - indxStart; // Number of elements in the matrix
242

243 // Now create the matrix containing the elements that differ from the parent
246 CoinPackedMatrix ADiff(false,
247 &(rowDifIndx[indxStart]), &(colDifIndx[indxStart]),
248 matrixElem, nmbElem);
249

250 // Add the scenario to the SMI object.
253 int scenIndx = ptStochModel->generateScenario(ptCoreModel, &ADiff,
254 NULL, NULL, NULL, NULL, NULL,
255 brStage, parScen, prob);
261 return scenIndx; // Return the index of the new scenario
262 }

Figure 4: Method add_scenario for the SMI-based approach.

82 // Attach a solver to the stochastic model
83 stochModel.setOsiSolverHandle(*new OSI SOLVER INTERFACE());
84

85 // ’loadOsiSolverData()’ loads the deterministic equivalent into an
86 // internal OSI data structure and returns a handle (pointer) to it.
87 OsiSolverInterface *ptDetEqModel = stochModel.loadOsiSolverData();
88

89 // ’ptDetEqModel’ now includes the deterministic equivalent
90 ptDetEqModel->writeMps("investment.det-equiv");
91 cout << endl << "Solving the deterministic equivalent:" << endl;
92 ptDetEqModel->initialSolve();
93 cout << endl << "The deterministic equivalent model has "
94 << ptDetEqModel->getNumCols() << " variables and "
95 << ptDetEqModel->getNumRows() << " constraints." << endl;
96 cout << "Optimal objective value = " << ptDetEqModel->getObjValue()

<< endl;

Figure 5: main code of the SMI-based approach – solving the deterministic equivalent.
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102 cout << endl << "The stochastic model has " << stochModel.getNumScenarios()
103 << " scenarios." << endl;
105

106 // We will calculate the wealth at each node of the tree, plus the obj. value
107 vector<double> nodeWealth(nmbStages, 0);
108 double objValue = 0.0;
109

110 // Get vectors of variable values and their objective coefficients
111 const double *ptOsiSolution = ptDetEqModel->getColSolution();
112

113 // Compute the wealth at each node, by traversing the tree from leafs up
114 for (SmiScenarioIndex sc = 0; sc < nmbScen; sc ++) {
115 // Get the leaf node of scenario sc:
116 SmiScnNode *ptNode = stochModel.getLeafNode(sc);
117 int nodeStage = nmbStages;
118

119 double scProb = ptNode->getModelProb(); // probability of the leaf
120 double scenObjVal = stochModel.getObjectiveValue(sc); // objective value
121 objValue += scProb * scenObjVal;
122 printf ("scen %d: prob = %.3f obj =%7.2f", sc+1, scProb, scenObjVal);
123

124 // This loop traverses the tree, from the leaf to the root
125 while (ptNode != NULL) {
126 // info about columns of ptNode in the OSI model (ptDetEqModel)
127 int startColInOsi = ptNode->getColStart();
128 int nmbColsInOsi = ptNode->getNumCols();
129

130 // Loop through the variables corresponding to this node
131 double wealth = 0.0;
132 if (nodeStage < nmbStages) {
133 // The node is not a leaf -> just sum up the variables
134 for (int j = startColInOsi; j < startColInOsi + nmbColsInOsi; j++) {
135 wealth += ptOsiSolution[j];
136 }
137 } else { // Special rules for the leaves
142 // get RHS of the only constraint for this node (get LB, check LB=UB)
143 double capTarget = -ptDetEqModel->getRowLower()[ptNode->getRowStart()];
146

147 // In the leaves, the wealth is computed as: -w + y + capTarget
148 wealth = -ptOsiSolution[startColInOsi]
149 + ptOsiSolution[startColInOsi+1]
150 + capTarget;
151 }
152 nodeWealth[nodeStage-1] = wealth;
153

154 // Get the parent node (Root will return NULL, stopping the loop)
155 ptNode = ptNode->getParent();
156 nodeStage--;
157 }
158

159 printf ("; wealth:");
160 for (int t = 0; t<nmbStages-1; t++)
161 printf ("%6.2f ->", nodeWealth[t]);
162 printf ("%6.2f\n", nodeWealth[nmbStages-1]);
163 }
164

165 printf ("%15s Total obj = %7.3f\n", "", objValue);
168 return 0;
169 }

Figure 6: main code of the SMI-based approach – reporting the scenario solutions.
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3.2 Investment example using FlopC++ – A node-based approach

In this section, we present a node-based formulation of the problem using the FlopC++ library. This is
basically a FlopC++ reformulation of the the AMPL model from Appendix A. Just as in the previous
section, we will build the code step-by-step, starting with the initialization part presented in Figure 7.
In addition to the standard include and using parts, we see also two versions of a function called
get_pred. This function calculate the predecessor of a given node, using the fact that we have a
regular binary tree. The version at lines 15–18 operates on numbers, while the version at lines 19–23
operates on FlopC++ class MP_index. We really need only one of them, the point is to illustrate
different ways of doing things: while the latter formulation has an advantage that it can be used directly
in indexing expressions, it is also limited in the way that one can only use operators and functions
overloaded in the MP_index class (such as floor).

5 #include "flopc.hpp"
6

7 // Change these two lines to use a different solver
8 #include "OsiClpSolverInterface.hpp"
9 #define OSI SOLVER INTERFACE OsiClpSolverInterface
10

11 using namespace std;
12 using namespace flopc;
14

15 // Predecessor of a given node; input and output as a number
16 int get pred(const int node) {
17 return floor((node-1) / 2);
18 }
19 // Predecessor of a given node; input and output as an MP index
21 MP index exp get pred(MP index &node) {
22 return floor((node-1) / 2);
23 }

Figure 7: Initialization part for the FlopC++ version.

In a modelling language like AMPL, one usually starts with the model and then provides the data.
In FlopC++, however, we must have the data when we create the model’s objects. We thus start the
main part of the code by providing the input data, see Figure 8. Note that we include the data only to
make the example shorter; In a real-life situation the data would be read from an external data file. In
other words, the fact that we need data to initialize the model’s objects does not mean that we need the
data at compile time, so it is fully possible to write data-independent models.

The next step is to initialize the MP_model object and attach the sets and data, see Figure 9. At
lines 53–55, we define the MP_model object and attach the OSI solver defined at line 9. At lines
62–70 we define all the sets, indices and subsets, which are then filled at lines 72–94. Note that the
tree structure is described by set PREDS, which is a subset of NODES×NODES, specifying a set of
predecessors for each node n ∈ NODES. This might seem overly complicated, since we know that a
node has at most one predecessor, but it is nevertheless the easiest way we know of. It is also a very
general way, capable of model even any trees – all that would be needed is to replace the line 94 by an
appropriate description of the tree structure.

At lines 97–99, we define the probabilities as a parameter indexed on set LEAVES. Note how we
use the method size() to get the cardinality of the set LEAVES. Finally, at lines 123–125 we define
the parameter Return and initialize its values by providing a reference to the data defined at lines
36–51.
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25 int main()
26 {
27 // DATA - This would be normally read from some external file
28 enum {stocks, bonds, nmbAssets}; // assets to invest to; sets nmbAssets = 2
29 int Root = 0; // root node
30 int nmbNodes = 15; // nodes are 0..14
31 int firstLeaf = 7; // leaves are 7..14
32

33 double InitBudget = 55;
34 double CapTarget = 80;
35

36 double retData[][nmbAssets] = {
37 {1.25, 1.14},
38 {1.06, 1.16},
39 {1.21, 1.17},
40 {1.07, 1.12},
41 {1.15, 1.18},
42 {1.06, 1.12},
43 {1.26, 1.13},
44 {1.07, 1.14},
45 {1.25, 1.15},
46 {1.06, 1.12},
47 {1.05, 1.17},
48 {1.06, 1.15},
49 {1.05, 1.14},
50 {1.06, 1.12}
51 };

Figure 8: Start of the main code of the FlopC++ approach.

Now we are ready to start defining the main model objects, i.e. variables, constraints and the
objective, as shown in Figure 10. We start with the easy part, variables (l. 127–135) and the objective
function (l. 137–139). Since the default bounds on variables are [0,∞], we do not have to use the
lowerLimit and upperLimitmethods. Note the syntax of the sum function used for the objective
function, illustrating indexing with set names – this might be a bit strange for AMPL users, while
GAMS users should feel at home.

Finally, we have to define the constraints, see lines 141–166. There are three types of constraints:
the initial_budget constraint in the root, final_balance in the leaves and cashflow_
balance in all the nodes between. The easiest of them is initial_budget, given by a simple
sum. Here we use an alternative syntax, using an index a inside the sum. Note that the index has to be
a previously defined object of type MP_index, see line 70 in Figure 9.

The cashflow_balance are more complicated, since they illustrate a few things we have not
seen before:

• To get the values of Return from the predecessor node of node n, we sum over all the prede-
cessors: since n is an index of the constraint, Pred(n,pr) inside a sum will iterate over all
values of pr from NODES, such that (n,pr) is in the set PREDS – so we would better be sure
there is only one for each node (except for the root).

• We use the multiplication symbol “*” to index a sum on a product of two sets.

• We have to use FUT_NODES(n) as an index for Return, instead of using only n. The reason
is that n is defined as an index of the node inside the set MID_NODES, which might be different

13



53 // initialize the object for the model
54 MP model &model = MP model::getDefaultModel();
55 model.setSolver(new OSI SOLVER INTERFACE);
61

62 // Sets
63 MP set NODES(nmbNodes);
64 MP subset<2> PREDS(NODES,NODES); // A ‘set of predecessors’ for each node
65 MP subset<1> FUT NODES(NODES); // All nodes except Root
66 MP subset<1> LEAVES(NODES); // Leaves of the tree
67 MP subset<1> BRANCH NODES(NODES); // All nodes except leaves
68 MP subset<1> MID NODES(NODES); // All nodes except Root and leaves
69 MP set ASSETS(nmbAssets);
70 MP index n, a, pr; // for use with other sets, see bellow
71

72 // Fill the subsets; shows both the direct syntax and using an MP index
73 forall (NODES.such that(NODES != Root), FUT NODES.insert(NODES));
74 forall (NODES(n).such that(n >= firstLeaf), LEAVES.insert(n));
75 forall (NODES(n).such that(n < firstLeaf), BRANCH NODES.insert(n));
76 forall (NODES(n).such that(n != Root && n < firstLeaf),

MID NODES.insert(n));
86

87 // Data - tree structure
94 forall (NODES(n).such that(n != Root), PREDS.insert(n, get pred(n)));
96

97 // Probabilities of the leaves
98 MP data Prob(LEAVES);
99 Prob(LEAVES) = 1.0 / LEAVES.size();
100

123 // Init data object and read data; alt.: MP data Return(&retData[0][0]);
124 MP data Return(FUT NODES, ASSETS);
125 Return.value(&retData[0][0]); // use table retData, startin from el.[0][0]

Figure 9: main code of the FlopC++ approach – making the MP_model object

from the index of n inside the set FUT_NODES – which is what FUT_NODES(n) means. The
same is valid for the index pr and variable x, since pr runs on the complete set NODES and x is
defined on the subset BRANCH_NODES.

• Finally, note that in this case we have to use at least one MP_index, since we have two indices
(x and pr) running on the same set (NODES). In other words, we could replace one of them by
NODES and replace a by ASSETS, but it would make the constraint more difficult to understand.

The final_balance constraints are very similar, except that in this case we use the MP_index
version of the get_pred function to get the predecessor directly, without the PREDS set. We repeat
that this approach would not work for general unbalanced trees.

The model is now ready, so we need only to build and solve it, as shown in Figure 11. First, we set
the MP_expressionobjFunc as an objective function and then call the attach() method. This
creates an OSI object with the model and attaches it to the algebraic representation in the MP_model
object model. The OSI object can be accessed directly using the overloaded “->” operator. This is
illustrated on line 173, where we call the OSI method writeMps to write an MPS representation of
the current model. Finally, we solve the model at line 176. It should be noted that the lines 169, 170
and 176 can be replaced by a single command “model.minimize(objFunc);” , which would do
exactly the same.
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127 // Variables
132 MP variable
133 x(BRANCH NODES, ASSETS), // investment
134 w(LEAVES), // shortage
135 y(LEAVES); // surplus
136

137 // Objective - define it as an expression; later say it should be minimized
138 MP expression objFunc
139 = sum(LEAVES, Prob(LEAVES) * (1.3 * w(LEAVES) - 1.1 * y(LEAVES)));
140

141 // Constraints
142 MP constraint
143 initial budget,
144 cashflow balance(MID NODES),
145 final balance(LEAVES);
146

147 initial budget = sum(ASSETS(a), x(Root, a)) == InitBudget;
148

157 cashflow balance(MID NODES(n))
158 = sum(ASSETS(a)*PREDS(n,pr), Return(FUT NODES(n), a)
159 * x(BRANCH NODES(pr), a))
160 == sum(ASSETS(a), x(BRANCH NODES(n), a));
161

164 final balance(LEAVES(n))
165 = sum(ASSETS(a), Return(FUT NODES(n), a)

* x(BRANCH NODES(get pred(n)), a))
166 + w(LEAVES(n)) - y(LEAVES(n)) == CapTarget;

Figure 10: main code of the FlopC++ approach – defining the variables, objective function and
constraints.

168 // Set the objective; attach the model;
169 model.setObjective(objFunc);
170 model.attach();
171

172 // Write MPS file
173 model->writeMps("investment");
174

175 // Minimize the objective, ie. solve the model;
176 model.minimize();
177

178 return 0;
179 }

Figure 11: main code of the FlopC++ approach – building and solving the model.

This completes the code. Note that we need to link the following COIN-OR libraries in order to
build the code: FlopCpp, OsiClp, Clp, Osi, and CoinUtils. Again, if we want to use another solver, the
OsiClp and Clp libraries have to be replaced accordingly.
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3.3 Investment example using FlopC++ – A stage-based approach

While the FlopC++ model presented above is, hopefully, reasonably easy to understand, it is only a
deterministic formulation with very little information about the stochastic structure of the problem. In
this section, we will present a different way of modelling the same problem, using an implicit separation
of the problem into stages. The formulation is based on the stampl.cpp example from FlopC++
distribution, which has been tailored to fit our problem.

The basic idea of this reformulation is to introduce a StageNode object that includes the model at
one node of the scenario tree, introducing thus an implicit stage structure into the model. Unfortunately,
it also makes the code look less like an mathematical model and more like a C++ code – it would be
better to hide as much of the “C++ machinery” from the end user as possible, but this is out of the scope
of this text.

Defining the stage and scenario-tree objects

Since there is a difference between the models in the root-, leaf- and middle-nodes, we first define a
common ancestor class StageNode and then derive the stage-specific classes from it. The definition
of the StageNode base class is presented in Figure 12. The only model-dependent part of the class
are the members22 at lines 35–38, with the same meaning as before. The tree-structure members at
lines 40–43 should be self-explanatory, so we move to the class constructor (l. 45–54). There, if we
provide a pointer to the parent node (i.e. if the node is not the root), we have to do two things: we
compute the node’s total (unconditional) probability as the product of the parent’s total probability and
the specified conditional probability and then we add the node to the parent’s set of children.

The make_obj_function_ method (lines 58–73) creates the objective function for the node
and all this children. It is declared protected, because the user should only call it from the root, to
create the complete objective function. We see (l. 67–72) that the objective function is defined as the
sum of children’s objective functions. Generally, this should include the node’s objective function as
well, but we have objective coefficients only in the leaves. This means that we will have to override
this function in the leaf-node object—which is why it is declared virtual. The children’s objective
functions must be defined before we can call the code at line 71, so we have to call make_obj_
function_ on the children first (l. 61–66).

The RootNode class, presented in Figure 13, adds the following to the base class StageNode:

• constraint initialBudget, defined on line 79 and initialized in the constructor of the object
(line 84);

• method make_objective_function, which is a public interface for the protected
method make_objective_function_.

The MidStageNode class, presented in Figure 14, is a class for all the nodes between the root
and leaves. It adds the following two members to the base class:

• constraint cashFlowBalance, again initialized in the constructor of the object;

• data object Return – we will come back to it later.

Finally, the LeafNode class (Figure 15) for the leaves of the scenario tree, which adds:

• variables w and y;
22 Note that it is generally considered a bad programming practice to declare members of a class public. Instead, the

members should be private or protected and we should provide get and set methods to access them. This, however,
would make the example code significantly longer, which is why we have decided to leave all the members public.
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33 class StageNode {
34 public:
35 MP set ASSETS; ///< set of assets
36 MP index a; ///< index used in formulas
37 MP variable x; ///< The ”buy” variable, defined on ASSETS
38 MP expression objFunction; ///< objective function at this node
39

40 StageNode *ptParent; ///< pointer to parent node
41 vector<StageNode *> children; ///< pointers to children of this node
42 int nodeNmb; ///< node number - used only for reporting
43 double prob; ///< probability (unconditional) of the node
44

45 StageNode(StageNode *ptPred, const int nmbAssets, const int nodeN,
46 const double condProb)
47 : ASSETS(nmbAssets), x(ASSETS), ptParent(ptPred), nodeNmb(nodeN),
48 prob(condProb)
49 {
50 if (ptParent != NULL) {
51 prob *= ptParent->prob; // Compute the total probability
52 ptParent->children.push back(this); // Register with the parent
53 }
54 }
55 virtual ∼StageNode(){}
56

57 protected:
58 /// Create the objective function expression, recursively for all children
61 virtual void make obj function () {
63 // Create the objective recursively for all descendants of the node
64 for (int i=0; i < (int) children.size(); i++) {
65 children[i]->make obj function ();
66 }
67 // No objective at non-leaf nodes, so the objective value at this node
68 // and all its descendants is a sum of obj. values of the children.
69 objFunction = children[0]->objFunction;
70 for (int i=1; i < (int) children.size(); i++) {
71 objFunction = objFunction + children[i]->objFunction;
72 }
73 }
74 };

Figure 12: The StageNode class for the stage-based FlopC++ approach.

• constraint finalBalance;

• data object Return;

• its own version of the make_obj_function_ method, computing the objective function at
the node.

There is an important difference in the implementation of the Return member in the two above
classes: in MidStageNode, the Return object is constructed as Return(ptRetVect,ASSETS)
(line 111). This constructor uses a shallow copy of the input array ptRetVect, i.e. it only stores the
pointer (reference) and does not copy the values. This means that if we later change the values to
which ptRetVect points, the Return will change as well—and if we delete the array, the code will
most likely crash on calling the attach method. The constructor of the LeafNode class, on the
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77 class RootNode : public StageNode {
78 public:
79 MP constraint initialBudget; ///< initial budget constraint
80

81 RootNode(const int nmbAssets, const double initWealth)
82 : StageNode(NULL, nmbAssets, 0, 1.0)
83 {
84 initialBudget() = sum(ASSETS, x(ASSETS)) == initWealth;
85 }
86

87 /// This is the public interface to the protected \c make obj function ()
90 void make objective function() {
91 make obj function ();
92 }
93 };

Figure 13: The RootNode class for the stage-based FlopC++ approach.

96 class MidStageNode : public StageNode {
97 public:
98 MP constraint cashFlowBalance; ///< cash-flow balance constraint
99 MP data Return; ///< returns of the assets at this node
100

101 /// Constructs a \c MidStageNode object
108 MidStageNode(StageNode *ptPred, const int nodeN,
109 const double condProb, double *ptRetVect)
110 : StageNode(ptPred, ptPred->ASSETS.size(), nodeN, condProb),
111 Return(ptRetVect, ASSETS)
112 {
114 cashFlowBalance = sum(ASSETS(a), ptParent->x(a) * Return(a))
115 == sum(ASSETS(a), x(a));
116 }
117 virtual ∼MidStageNode(){}
118 };

Figure 14: The MidStageNode class for the stage-based FlopC++ approach.

other hand, constructs the Return object only as Return(ASSETS), see line 135, and then calls
the value method to initialize it with the provided value. The value method uses a deep copy of the
input data, i.e. it copies the values ptRetVect points at. This is slower than doing the shallow copy,
but the Return will not be affected by any later change to ptRetVect.

Note that the only reason to use both approaches in one code is to show two different ways of
initializing an MP_data object. In a normal situation, one would choose the options that fits best for
the given situation and use it consistently throughout the code.

In addition to the stage-node objects, we have decided to add a simple object describing the shape
of the scenario tree, see Figure 16. The class provides the following information:

• the number of nodes nmbNodes;

• index of the first leaf firstLeaf;

• function get_parent, returning an index of the parent of a given node.
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121 class LeafNode : public StageNode {
122 public:
123 MP variable w; ///< shortage variable
124 MP variable y; ///< surplus variable
125 MP constraint finalBalance; ///< constraint for the final balance
126 MP data Return; ///< returns of the assets at this node
127

128 /// Constructs a \a LeafNode object
133 LeafNode(StageNode *ptPred, const int nodeN, const double condProb,
134 const double *ptRetVect, const double capTarget)
135 : StageNode(ptPred, ptPred->ASSETS.size(), nodeN, condProb),

Return(ASSETS)
136 {
137 Return.value(ptRetVect); // Copy values from retVect to Return
138 // This shows a formula without using an additional MP index
139 finalBalance = sum(ASSETS, ptParent->x(ASSETS) * Return(ASSETS))
140 + w() - y() == capTarget;
141 }
142

143 protected:
144 /// version of \a make obj function () for the leaves - no recursion
145 void make obj function () {
146 objFunction = prob * (1.3 * w() - 1.1 * y());
147 }
148 };

Figure 15: The LeafNode class for the stage-based FlopC++ approach.

154 class ScenTreeStruct {
155 public:
156 int nmbNodes; ///< nodes are 0..nmbNodes-1, where 0 is root
157 int firstLeaf; ///< nodes firstLeaf..nmbNodes-1 are leaves
158

159 /// Constructs the object
160 ScenTreeStruct(const int nNodes, const int firstL)
161 : nmbNodes(nNodes), firstLeaf(firstL)
162 {}
163 virtual ∼ScenTreeStruct(){}
164

165 /// This function returns the parent of a given node (and 0 for the root)
169 virtual int get parent(int n) const = 0;
170 };

Figure 16: The ScenTreeStruct class for the stage-based FlopC++ approach.

Function get_parent is kept undefined for the general ScenTreeStruct class. In fact, the func-
tion is declared virtual and set equal to zero, making the ScenTreeStruct class an abstract
base class and forcing any derived class to come with its own implementation of the get_parent
function.

The only derived class we need in our example is a class for regular binary trees, presented in
Figure 17. Note that the formula for get_parent (line 180) uses the fact that in C++ (and C as well),
division of two integers is again an integer, with the result rounded down.
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172 /// Class for balanced binary trees
173 class BinTreeStruct : public ScenTreeStruct {
174 public:
175 /// Constructs the object - 2ˆT-1 nodes, first leaf is 2ˆ(T-1)-1
176 BinTreeStruct(const int nmbStages)
177 : ScenTreeStruct(pow(2.0, nmbStages) - 1, pow(2.0, nmbStages-1) - 1) {}
178

179 int get parent(int n) const {
180 return (n-1) / 2; // This gives: get parent(0) = 0
181 }
182 };

Figure 17: The BinTreeStruct class for the stage-based FlopC++ approach.

The main code

Once we have defined all the objects, the main code is quite short. The initialization of the libraries is
the same as before, see lines 5–12 in Figure 7. Also start of the main function is the same, as we have
start by providing the input data. The only difference from the code in Figure 8 is that we no longer need
the Root, nmbNodes and firstLeaf values, as they are all provided by the BinTreeStruct
class.

The rest of the main is then presented in Figure 18. All the scenario tree nodes are created in the
loop on lines 225–244, using the tree-structure information from the BinTreeStruct-class object
scTree. Once this is done, we only need to initialize the objFunction objects at all nodes by call-
ing make_objective_function method from the root (line 263), set the root’s objFunction
expression as the objective function (line 264) and attach the model to the OSI interface (line 265).
Then we are ready to solve the model (line 269) and report some results (lines 271–244). We can also
save the model as an MPS file, as shown on line 266 – note again that we use the overloaded “->”
operator to get access to the OSI object attached to our MP_model-class object model.
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186 int main()
187 {
189 // binary scenario tree with 4 stages: 15 nodes, firstLeaf = 7
190 BinTreeStruct scTree(4);
191

216 // Initialize the object for the model
217 MP model &model = MP model::getDefaultModel();
218 model.setSolver(new OSI SOLVER INTERFACE);
224

225 // Create the scenario tree
226 vector<StageNode *> treeNodes;
227 treeNodes.push back(new RootNode(nmbAssets, InitBudget));
228 for (int i = 1; i < scTree.nmbNodes; i++) {
229 int pred = scTree.get parent(i);
230 if (i < scTree.firstLeaf) {
231 // Adding a mid-stage node
232 treeNodes.push back(
235 new MidStageNode(treeNodes[pred], i, 1.0 / 2, retData[i-1])
236 );
237 } else {
238 // Adding a leaf
239 treeNodes.push back(
241 new LeafNode(treeNodes[pred], i, 1.0 / 2, retData[i-1], CapTarget)
242 );
243 }
244 }
245

258 // create a ”shortcut object” for the root
261 RootNode *ptRoot = dynamic cast<RootNode *>(treeNodes[0]);
262

263 ptRoot->make objective function(); // Create the objective func.
264 model.setObjective(ptRoot->objFunction); // Set the objective
265 model.attach(); // Attach the model
266 model->writeMps("investment"); // Write an MPS file
267

268 // Solve the model
269 model.minimize();
270

271 // Report some results
272 cout << endl << "Optimal objective value = " << model->getObjValue()
273 << endl << "First-stage x:";
274 ptRoot->x.display();
275

276 for (int n = 0; n < (int) treeNodes.size(); n++)
277 delete treeNodes[n]; // cleaning
278

279 return 0;
280 }

Figure 18: The main function of the stage-based FlopC++ approach. Node that we have omitted
the input data, since they are the same as in Figure 8, lines 33–51.
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3.4 Investment example combining SMI and FlopC++

In Section 3.1, we have seen that the SMI library is a good tool for generating a stochastic model,
given the core (deterministic) model and the stochastic information. The major inconvenience of this
approach is in the construction of the core model: we had to manually construct all the elements of the
LP model. This can easily become an tedious and error-prone procedure for bigger and more complex
models. The FlopC++ library, on the other hand, allows for a more natural way of specifying LP
models, but does not—at least at the moment23—include any stochastic information.

It seems therefore natural to combine the two approaches and use FlopC++ to create the core model
and use it to build a stochastic model with SMI. In this section, we present an example of such a
combination, using the stage-based FlopC++ model from Section 3.3. We would like to stress that the
example’s main purpose is to demonstrate that it is possible to combine the two packages. To make this
approach practical, one should hide most of the extra objects from the end user by making them a part
of the libraries instead – a process that has already begun, but will most likely take some time to finish.

Updating the stage- and scenario-tree objects

Since the code is basically a combination of the codes from Sections 3.1 and 3.3, we will only list
the parts of the code that differ. We start by definition of the StageNode class, see Figure 19. The
major change is addition of the all_variables and all_constraints objects, that will be
later used to assign stages to variables and constraints of the core model. Since adding references
to the all_variables vector involves constructing new objects (as we will see later), we need to
update the destructor of the class, see lines 77–81. We have also added a reference to a constraint
called pt_balance_constraint, which we will use later as a common way to access the stage-
objects’ constraints – since the constraints have different names in the derived stage objects, we would
otherwise have to access the constraints in the derived classes separately. In other words, this object is
not needed, but it will simplify the code later.

The last addition to the StageNode class is the get_wealthmethod (lines 83–97), use to report
the wealth at the node, after the stochastic model has been solved. Unfortunately, we have not found
any easy way to do this using the FlopC++ objects, for reasons that will become apparent later. This
is not an issue in our small example, since the wealth in all the nodes except leaves is simply the sum
of all the nodes’ variables. In a more complex model, though, we would probably need to find a better
way.

The only differences in classes RootNode and MidStageNode are then in their constructors,
where we have to add all node’s the variables and constraints to the vectors all_variables and
all_constraints object and initialize the pt_balance_constraint pointer—see Figures 20
and 21, respectively. Note also that adding variables to the all_variables object involves creating
new instances of type VariableRef*, which is why we had to add the destructor to the StageNode
class.

There are more changes in the LeafNode class, where we also have to override the get_wealth
function, since the wealth at a leaf node is computed as -w+y+capTarget, where capTarget is a
new class member for storing the capital target. The changes are shown in Figure 22.

The ScenTreeStruct and BinTreeStruct can remain the same as in the previous section.

23 There is an ongoing effort to add stochastic elements to the FlopC++ syntax, but it has not been finished by the time of
writing. The source code can be found in the FlopC++ SVN repository under branches/stochastic.
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38 class StageNode {
39 public:
50 /// \name References to variables and constraints
57 vector<VariableRef *> all variables; ///< references to all variables
58 vector<MP constraint *> all constraints; ///< references to all constraints
59 /// A common way to access the balance constraints in the derived classes
64 MP constraint *pt balance constraint;
66

77 virtual ∼StageNode() {
78 for (int a = 0; a < (int) all variables.size(); a++) {
79 delete all variables[a];
80 }
81 }
82

83 /// get the wealth at the nodes
90 virtual double get wealth(const double *variableValues,

const int nmbVars) {
93 double wealth = 0;
94 for (int i = 0; i < nmbVars; i++)
95 wealth += variableValues[i];
96 return wealth;
97 }
98

116 };

Figure 19: The StageNode class for the combined Smi & FlopC++ approach. It only lists the
parts that have been changed or added, compared to the code in Figure 12.

119 class RootNode : public StageNode {
120 public:
123 RootNode(const int nmbAssets, const double initWealth)
124 : StageNode(NULL, nmbAssets, 0, 1.0)
125 {
126 initialBudget() = sum(ASSETS, x(ASSETS)) == initWealth;
127

128 for (int a = 0; a < nmbAssets; a++) {
129 all variables.push back(new VariableRef(x(a)));
130 }
131 all constraints.push back(&initialBudget);
132 pt balance constraint = NULL;
133 }
141 };

Figure 20: Updated constructor of the RootNode class for the combined Smi & FlopC++ ap-
proach. The rest of the RootNode class is the same as in Figure 13

The main code

The main code starts similarly to the previous section, i.e. with the data, so we again skip them. The
code then follows the structure of the SMI code, so we start with creating the core model, then create
the stochastic model by adding scenarios to the core, solve it, and finally do some reporting.

The core model is created in a manner similar to the previous section, i.e. using the FlopC++
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144 class MidStageNode : public StageNode {
145 public:
156 MidStageNode(StageNode *ptPred, const int nodeN,
157 const double condProb, double *ptRetVect)
158 : StageNode(ptPred, ptPred->ASSETS.size(), nodeN, condProb),
159 Return(ptRetVect, ASSETS)
160 {
162 cashFlowBalance = sum(ASSETS(a), ptParent->x(a) * Return(a))
163 == sum(ASSETS(a), x(a));
164

165 for (int a = 0; a < ASSETS.size(); a++) {
166 all variables.push back(new VariableRef(x(a)));
167 }
168 all constraints.push back(&cashFlowBalance);
169 pt balance constraint = &cashFlowBalance;
170 }
171 };

Figure 21: Updated constructor of the MidStageNode class for the combined Smi & FlopC++
approach. The rest of the MidStageNode class is the same as in Figure 14

174 class LeafNode : public StageNode {
175 public:
180 double capTarget; ///< the capital target parameter
181

182 /// Constructs a \a LeafNode object
187 LeafNode(StageNode *ptPred, const int nodeN, const double condProb,
188 const double *ptRetVect, const double capTg)
189 : StageNode(ptPred, ptPred->ASSETS.size(), nodeN, condProb),
190 Return(ASSETS), capTarget(capTg)
191 {
192 Return.value(ptRetVect); // Copy values from retVect to Return
194 finalBalance = sum(ASSETS, ptParent->x(ASSETS) * Return(ASSETS))
195 + w() - y() == capTarget;
196

197 all variables.push back(new VariableRef(w()));
198 all variables.push back(new VariableRef(y()));
199 all constraints.push back(&finalBalance);
200 pt balance constraint = &finalBalance;
201 }
202

203 /// In the leaves, the wealth is computed as: -w + y + capTarget
204 double get wealth(const double *variableValues,

const int nmbVars) {
207 return -variableValues[0] + variableValues[1] + capTarget;
208 }
215 };

Figure 22: Updated constructor of the LeafNode class for the combined Smi & FlopC++ ap-
proach. The rest of the LeafNode class is the same as in Figure 15.

objects, see Figure 23. The major new features are:

• The scenNodeNmb vector. This vector includes the indices of nodes in the currently processed
scenario. It is initialized on lines 297–301 to hold the first scenario—note how we start in the
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leaf (line 297) and then move up the scenario tree.

• The coreNodes vector corresponds to the treeNodes vector from Figure 18, but includes
only one node per stage, while treeNodes represented the whole scenario tree. This is because
we now operate on scenarios: first create the core model, i.e. a model with only once scenario,
and then add the scenarios to the stochastic model one by one.

254 int main()
259 const int nmbStages = 4;
289 // Initialize the object for the core (deterministic) model
290 MP model &coreModel = MP model::getDefaultModel();
291 coreModel.setSolver(new OSI SOLVER INTERFACE);
292 coreModel.silent(); // less output
293

294 int a, i, j, n, t;
295

296 vector<int> scenNodeNmb(nmbStages); // nodes (indices) in a scenario
297 n = scTree.firstLeaf; // leaf of the first scenario
298 for (t = nmbStages; t > 0; t--) {
299 scenNodeNmb[t-1] = n;
300 n = scTree.get parent(n);
301 }
302

303 // Create scenario tree for the core model, using data for the 1st scenario
304 vector<StageNode *> coreNodes(nmbStages);
305 coreNodes[0] = new RootNode(nmbAssets, InitBudget);
306 for (t = 1; t < nmbStages-1; t++) {
307 coreNodes[t] = new MidStageNode(coreNodes[t-1], t, 1.0,
308 retData[scenNodeNmb[t]-1]);
309 }
311 coreNodes[t] = new LeafNode(coreNodes[t-1], t, 1.0,
312 retData[scenNodeNmb[t]-1], CapTarget);
313

314 // create a ”shortcut object” for the root
315 RootNode *ptRoot = dynamic cast<RootNode *>(coreNodes[0]);
316

317 ptRoot->make objective function(); // Create the objective func.
318 coreModel.setObjective(ptRoot->objFunction); // Set the objective
319 coreModel.attach(); // Attach the model

Figure 23: First part of the main function of the combined Smi & FlopC++ approach. This shows
the creation of the core objects, using the FlopC++ objects.

At the end of of the code in Figure 23, we have an MP_model-class object coreModelwith an at-
tached OSI representation of the core model. The last thing we need to create the SMI SmiCoreData
object is the information about stages of variables and constraints. For this we use the new all_
variables and all_constraints objects, i.e. the lists of all variables and constraints at each
node, combined with the fact that we know the stage each node belongs to. In the code in Figure 24,
lines 331–345 show the construction of the vector colStageswith the stage numbers for all variables
and lines 350–363 show the corresponding code for constraints. The SmiCoreData is then build on
lines 368–370. Note how we again use the fact that the operation -> of an MP_model points to the
attached OSI object.

Once we have the SmiCodeData object, we can start building the stochastic model, i.e. an
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321 // Get number of variables and constraints from the OSI model
323 int nmbCoreCols = coreModel->getNumCols();
324 int nmbCoreRows = coreModel->getNumRows();
325

331 // Now, we have to get the stage number for all variables and constraints
333 int *colStages = new int[nmbCoreCols];
335 for (t = 0; t < nmbStages; t++) {
336 for (j = 0; j < (int) coreNodes[t]->all variables.size(); j++) {
337 int colIndx = coreNodes[t]->all variables[j]->getColumn();
342 colStages[colIndx] = t;
344 }
345 }
349

350 // Now do the same for the constraints
351 int *rowStages = new int[nmbCoreRows];
353 for (t = 0; t < nmbStages; t++) {
354 for (i = 0; i < (int) coreNodes[t]->all constraints.size(); i++) {
355 int rowIndx = *coreNodes[t]->all constraints[i];
360 rowStages[rowIndx] = t;
362 }
363 }
367

368 // Now, we can build the CORE problem, i.e. the deterministic version
369 SmiCoreData stochCore(coreModel.operator->(), nmbStages,
370 colStages, rowStages);
371 delete[] colStages;
372 delete[] rowStages;

Figure 24: Second part of the main function of the combined Smi & FlopC++ approach. This
shows the association of stages to the core model.

SmiScnModel object. This means that the rest of the code will be based mostly on Section 3.1.
The creation of the SmiScnModel object stochModel is presented in Figure 25. Remember that
in our model, the scenarios differ only in the LP matrix A, so the only data we need to add scenarios
is the matrix ADiff including the elements that differ from the previous scenario. Note the use of the
reverseOrdering method on line 389, which changes the sparse-matrix storage from the default
column-based to a row-based model, expected by some internal SMI routines24

The scenarios are added in the loop on lines 394–437. Note that the loop is actually on the leaves
of the tree, using the fact that there is a one-to-one relation between scenarios and leaves. For each leaf,
we then move up the tree as long as the nodes are different from the previous scenario (whose indices
are stored in the vector scenNodeNmb). This is modelled using the while loop on lines 400–420.
Since scenNodeNmb has been initialized to point to the first scenario (see Figure 23, lines 297–301),
the first scenario will never enter the while loop, leaving the ADiff matrix empty. This is exactly
what we need, since the first scenario is specified by its difference from the core and the core had been
created as a one-scenario model with data from the first scenario—so the matrix of differences is indeed
empty.

The matrix ADiff for a given scenario is then created on lines 409–415. Remember than we need
one matrix element for each return value in the model. For each return value, the matrix coordinates
(i,j) of the element are such that j is the index of the constraint (row) with the value and i is

24 The code would work also without this line, since SMI can reverse the order when needed—but doing so on full matrices
is slower than doing it on an empty matrix, as in our case.
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383 SmiScnModel stochModel;
384

385 // the matrix of differences wrt. the previous (parent) scenario
386 CoinPackedMatrix ADiff;
389 ADiff.reverseOrdering();
390

391 int nmbScen = scTree.nmbNodes - scTree.firstLeaf; // number of scenarios
392 double scenProb = 1.0 / nmbScen; // equiprobable scen.
393

394 // Add scenarios, one by one.
397 for (int leaf = scTree.firstLeaf; leaf < scTree.nmbNodes; leaf++) {
398 int scen = leaf - scTree.firstLeaf; // scenario index
399 n = leaf; // the current node to be added
400 t = nmbStages-1; // stage of node n
402 ADiff.clear(); // clean the matrix of differences - must reset dimensions!
403 ADiff.setDimensions(nmbCoreRows, nmbCoreCols);
404 while (n != scenNodeNmb[t]) {
407 scenNodeNmb[t] = n; // add the current node to the list
408

409 // Find row and column number of the matrix elements with Return values
410 i = *coreNodes[t]->pt balance constraint;
411 for (a=0; a<nmbAssets; a++) {
412 // Returns are on ’x’ variables from the parent!
413 j = coreNodes[t-1]->x(a).getColumn();
414 ADiff.modifyCoefficient(i, j, retData[n-1][a]);
415 }
416

417 // Move one node up in the scenario tree
418 n = scTree.get parent(n);
419 t--;
420 }
422

423 // Add the scenario to the Smi model
424 int branchStage = (scen == 0 ? 1 : t+1);
425 int parentScen = (scen == 0 ? 0 : scen - 1); // parent scenario
427 stochModel.generateScenario(&stochCore, &ADiff,
428 NULL, NULL, NULL, NULL, NULL,
429 branchStage, parentScen, scenProb);
437 }

Figure 25: Third part of the main function of the combined Smi & FlopC++ approach. This shows
the creation of the stochastic-model object stochModel.

the index of the involved variable (column). Here we can see the usefulness of the common pt_
balance_constraint pointer: without it, we would have to replace line 410 by two different lines,
depending whether we were in the last stage or not. Since the returns in the balance constraints always
correspond to variables from the parent node, we use the coreNodes vector to get the pointer to the
parent on line 413. Note the use of the getColumn method to get a column number corresponding
to a given MP_variable object25. Once we have the ADiff matrix, we add the scenario to the
stochastic model in the same way as we did in the add_scenario method in Section 3.1.

25 Actually, getColumn is a method of the VariableRef class, since indexing an MP_variable object a
VariableRef object. (Technically, the operator() of class MP_variable is overloaded by a function returning
const VariableRef &).
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The stochastic model is now finished and ready to be used. We can thus attach a solver and solve
the deterministic equivalent, using exactly the same code as in Figure 5. Also the detailed reporting
code from Figure 6 remains unchanged, with the following two exceptions:

• The while loop that traverses the tree and calculates the wealth at the nodes (lines 124–157)
can be simplified by using the get_wealth method of the StageNode class—see Figure 26.
Note how the whole loop at lines 130–152 in the old code has been replaced by a single command
in the new code (lines 492–495).

• In addition, we should delete the StageNode objects we had created while building the core
model (see Figure 23): 511 for (t = 0; t < nmbStages; t++)

512 delete coreNodes[t]; // cleaning

486 // This loop traverses the tree, from the leaf to the root
487 while (ptNode != NULL) {
488 // info about columns of ptNode in the OSI model (ptDetEqModel)
489 int startColInOsi = ptNode->getColStart();
490 int nmbColsInOsi = ptNode->getNumCols();
491

492 // get the wealth, using nodes of the core model
493 nodeWealth[nodeStage-1]
494 = coreNodes[nodeStage-1]->get wealth(&(ptOsiSolution[startColInOsi]),
495 nmbColsInOsi);
496

497 // Get the parent node (Root will return NULL, stopping the loop)
498 ptNode = ptNode->getParent();
499 nodeStage--;
500 }

Figure 26: The while loop for reporting the nodes’ wealth, from the final part of the main func-
tion of the combined Smi & FlopC++ approach. It is significantly shorter than the cor-
responding code from Section 3.1, see Figure 6, lines 124–157.

4 Conclusions

We have presented the SMI and FlopC++ projects from the COIN-OR collection and shown how they
can be used for modelling stochastic programming problems in C++. Each of the projects brings
something useful: SMI handles the stochastic aspects of the model, while FlopC++ allows for a more
natural modelling of the problem. While they can be used on their own, the real advantage comes from
combining the two approaches, as illustrated by the last example. Even if the last example is the longest
one if count the lines of the source code, it is probably the best (easiest) to scale to bigger models, both
in sense of bigger core model and bigger scenario trees.

We would like to point out there is an ongoing process to simplify the combined usage of SMI
and FlopC++, by including some of the extra objects in the projects’ distribution. Once this has been
finished, the presented examples should become obsolete as there will be an easier way of writing
stochastic models.
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A Extra material added for the stand-alone version

A.1 The investment example

The is basically the “Financial Planning and Control example from (Birge and Louveaux, 1997, Section
1.2), with slightly different numbers. It is a very simple investment model: we invest in two assets
(stocks and bonds) and want to maximize the expected utility of our wealth after a couple of periods.
The utility is a piece-wise linear function of the final wealth, with slope 1.3 values below a pre-specified
capital target (shortage) and 1.1 for values above the target (surplus). There are no transaction costs.

Instead of showing the standard mathematical formulation, Figure 27 presents the model in the
AMPL format. Since the model does not use any advanced features of AMPL, it is a valid GNU
MathProg model as well. The corresponding data file is shown in Figure 28.

7 # The scenario tree
8 param LastNode; # index of the last node
9 set NODES := 0 .. LastNode; # all nodes in the scenario tree
10 param Root in NODES default 0; # root of the tree
11 set FUT NODES := NODES diff {Root}; # all nodes except the root
12 param ChildPerNode default 2; # number of children nodes of each node
13 param Pred{n in FUT NODES} default (n-1) div ChildPerNode; # predecessors
14 param FirstLeaf; # index of the 1st leaf (last-stage node)
15 set LEAVES := FirstLeaf .. LastNode; # set of leaves
16 param Prob{LEAVES} default 1/(LastNode - FirstLeaf + 1); # probabilities
17

18 # Deterministic model and parameters
19 set ASSETS; # set of assets
20 param InitBudget; # initial budget
21 param CapTarget; # capital target
22

23 # Stochastic parameters
24 param Return{FUT NODES, ASSETS};
25

26 # Stochastic model variables
27 var x{NODES diff LEAVES, ASSETS} >= 0; # investment
28 var w{LEAVES} >= 0; # shortage
29 var y{LEAVES} >= 0; # surplus
30

31 # Objective function
32 minimize shortage minus surplus:
33 sum{n in LEAVES} Prob[n] * (1.3*w[n] - 1.1*y[n]);
34

36 ## CONSTRAINTS
37 subject to initial budget:
38 sum{a in ASSETS} x[Root, a] = InitBudget;
39

40 subject to cashflow balance{n in FUT NODES diff LEAVES}:
41 sum{a in ASSETS} Return[n, a] * x[Pred[n], a]

= sum{a in ASSETS} x[n, a];
42

43 subject to final balanace{n in LEAVES}:
44 sum{a in ASSETS} Return[n, a] * x[Pred[n], a] + w[n] - y[n]

= CapTarget;

Figure 27: The AMPL/GNU MathProg formulation of the investment example.
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7 # Scenario tree
8 param LastNode := 14;
9 param FirstLeaf := 7;
10

11 # Model data
12 set ASSETS := stocks bonds;
13

14 param InitBudget := 55;
15 param CapTarget := 80;
16

17 param Return:
18 stocks bonds :=
19 1 1.25 1.14
20 2 1.06 1.16
21 3 1.21 1.17
22 4 1.07 1.12
23 5 1.15 1.18
24 6 1.06 1.12
25 7 1.26 1.13
26 8 1.07 1.14
27 9 1.25 1.15
28 10 1.06 1.12
29 11 1.05 1.17
30 12 1.06 1.15
31 13 1.05 1.14
32 14 1.06 1.12
33 ;

Figure 28: Data for the AMPL/GNU MathProg formulation of the investment example.

Note that the model is very different from the one presented in Birge and Louveaux (1997). The
reason is that the book uses a scenario-based formulation, with explicit non-anticipativity constraints,
while our formulation is node-based. The advantage of the node-based formulation is that it avoids
duplication of the decision variables. In addition, the model formulation is completely independent on
the scenario-tree structure: the tree is specified by pointers to the parent/predecessor nodes (parameter
Pred), together with the root node and the set of leaf (last-stage) nodes and their probabilities. (Actu-
ally, both the root and the set of leaves can be derived automatically from the predecessor pointers as
the nodes with no parent and no children, respectively.)

The node-based formulation allows naturally divides the nodes of the scenario tree into three sub-
sets, each with different properties:

The root is the first-stage node, representing “now” and thus having a probability of one.

The leaves are the last-stage nodes. Each leaf corresponds to one scenario, so their probabilities must
sum-up to one.

All the other nodes of the scenario tree are of the same type, with the same variables and constraints,
regardless the stage they are in. If we needed their probabilities (we do not in this model), they
could be computed as the sum of the probabilities of their children, going backwards from the
penultimate stage. (This is easily done on one line of AMPL code, as long as the nodes are
ordered by the stage number.)
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Optimal objective value = -4.14214

x := stocks bonds
0 48.46 6.54
1 0.00 68.03
2 0.00 58.95
3 79.60 0.00
4 76.19 0.00
5 0.00 69.57
6 0.00 66.03

Wealth as a function of time (target is 80):
sc. 1: 55.0 -> 68.0 -> 79.6 -> 100.3
sc. 2: 55.0 -> 68.0 -> 79.6 -> 85.2
sc. 3: 55.0 -> 68.0 -> 76.2 -> 95.2
sc. 4: 55.0 -> 68.0 -> 76.2 -> 80.8
sc. 5: 55.0 -> 59.0 -> 69.6 -> 81.4
sc. 6: 55.0 -> 59.0 -> 69.6 -> 80.0
sc. 7: 55.0 -> 59.0 -> 66.0 -> 75.3
sc. 8: 55.0 -> 59.0 -> 66.0 -> 74.0

Figure 29: Solution to the investment example (glpsol output).

Using these three types of nodes, we see that the investment variables x exist in all nodes except
the leaves. The leaves, on the other hand, have extra variables w and y for computing the final shortage
and surplus, respectively. All the nodes need some type of a cash-flow-balance constraint: in the root,
the investment is bound by the initial budget (lines 37–38 in Figure 27), in the leaves we compare the
final capital to the given target (l. 43–44), and in the other nodes we have the standard “in=out”-type
constraint (l. 40–41). In addition, the stochastic asset returns (parameter Return) have to be provided
for all the nodes except the root.

Finally, Figure 29 presents the result of running glpsol on the above files, with some additional
post-processing code not presented here. The complete source files can be obtained from the author’s
web page http://work.michalkaut.net.

References

John R. Birge and François Louveaux. Introduction to stochastic programming. Springer-Verlag, New
York, 1997. ISBN 0-387-98217-5.

Michal Kaut, Alan J. King, and Tim H. Hultberg. A C++ modelling environment
for stochastic programming. Technical Report RC24662, IBM Watson Research Center,
2008. URL http://domino.watson.ibm.com/library/cyberdig.nsf/papers/
3E80629707DD1782852574E300592E33.
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