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In this paper, we present a two-stage stochastic mixed integer model for the
intra-hour balancing problem faced by system operators in electricity systems with
large penetration of wind power production. Since wind power is non-controllable
and intermi�ent, it is di�cult to predict wind power production. Wind power pre-
diction errors directly impact the balance between supply and demand of electric-
ity. �erefore, it is of utmost importance for the system operators to understand
and investigate these errors and plan accordingly when balancing the transmis-
sion system. In this model, we capture the uncertainty in wind power production
forecasts by generating scenarios for the prediction errors. We apply the model
on realistic Danish system data. We compare the stochastic solution and the de-
terministic solution to the solution of perfect foresight, and we �nd that wind
power prediction errors entail huge balancing costs. Furthermore, we see that
the stochastic solution incorporate a bu�er when activating manual reserves com-
pared to the deterministic solution. �e bu�er results in higher expected cost, but
the actual cost incurred is lower compared to the deterministic solution in most of
the cases.

1. Introduction

With existing technology, electricity cannot be stored large-scale in any feasible way. Since it
cannot be stored, the electricity has to be produced in the same second as it is consumed. It is
the responsibility of the system operator (SO) to balance the system such that supply always
equals consumption. With an increasing penetration of �uctuating renewable energy sources
such as solar and wind power, the supply of electricity becomes highly uncertain. However,
�uctuations can be met by planned conventional electricity production from thermal plants
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but only to the extent that the power from the �uctuating energy sources are forecasted accu-
rately. When there is a prediction error, the excess or shortage of electricity must be handled
through reserved power capacity on plants dedicated to this purpose. �ereby, the security
of the electricity system depends on accessibility of reserved power capacity for increased or
reduced electricity production.

�e purpose of this paper is to develop a two-stage stochastic mixed integer model that can be
used to analyse how to balance supply and demand of electricity within the hour seen from an
SO’s perspective. �e model is supposed to be used for analysing purposes, e.g. how di�erent
ramping pa�erns between �ow levels from transmission lines e�ect the system balance or how
di�erent balancing policies result in di�erent balancing costs.

Wind power production is one of the most promising large-scale renewables in Northern
Europe to replace some of the conventional supply. �erefore, in this paper, we look at an
electricity system with a large amount of installed wind capacity, and the stochasticity of the
model lies in the uncertainty in the wind power production. In order to capture the uncertainty,
we make scenarios for the wind power prediction error. �e model is an extension of the
deterministic Nordic balancing model presented in Andersen et al. (2014). A stochastic model
can capture the uncertainty of wind and thereby give a more precise picture of intra-hour
challenges related to wind power production.

When balancing an electricity system in the case of updated new information (e.g. new
wind power forecasts), the SO can use two di�erent strategies. Either they can be proactive
and re-dispatch generating units by activating or deactivating reserved capacity before real-
time operation, or they can wait until the imbalances occur and then re-dispatch the generating
units by activating or deactivating reserved capacity at the time the imbalances occur. If the SO
is proactive and able to forecast expected imbalances with high accuracy, smaller imbalances
will occur real-time. �is way balancing costs can be reduced since activation of reserved ca-
pacity is o�en cheaper the longer activation time, the generating unit has. We will refer to
re-dispatching generating units before real-time operation as activating manual reserves and
real-time activation or deactivation of reserved power capacity as activating automatic reserves.

In this paper, we assume that the SO is proactive and that the already commi�ed units in the
day-ahead market make their capacity for either additional or reduced electricity supply avail-
able to the SO. We consider balancing close to real-time operation when commitment sched-
ules, production plans for generating units, and forecasts for consumption and wind power
production have been made and converted to an intra-hour time resolution. An example on
how to convert hourly schedules and forecasts into an intra-hour time resolution can be seen
in Andersen et al. (2014). On the basis of the intra-hour schedules and forecasts, the presented
model re-dispatches the generating units before real-time operation in order to minimise bal-
ancing cost. It is assumed that the unit commitment schedule is �xed, and therefore our model
only considers re-dispatch of already commi�ed units.

Intra-hour balancing is closely related to the unit commitment (UC) problem, where start-
ups, shut-downs, and production levels for the generating units are decided upon, usually with
an hourly resolution. Stochastic UC models with scenarios for wind power production have
been studied intensively in literature. Where some have made scenarios for the wind power
production (e.g. Pappala et al. (2009)), others have made scenarios for the wind speed and
a�erwards converted wind speed to power (e.g. Papavasiliou and Oren (2013)). However, UC
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models with an hourly resolution do not capture �uctuations of wind power production within
the hour. To get the detailed information about the system within the hour, intra-hour models
can be used. Even though some intra-hour models have focused on uncertainty in wind power
production (e.g. Lindgren and Söder (2008); Ela and O’Malley (2012)), only few have looked at
intra-hour stochastic models for the balancing problem faced by SOs (e.g. Delikaraoglou et al.
(2014)). However, to the best of our knowledge, no study has a stochastic balancing model as
detailed as presented in this paper where technical ramping restrictions are included.

When making scenarios for wind power production in general, the emphasis has mainly been
on wind power forecasts and not so much on the study of wind power prediction errors. Even
though the wind power prediction error is a result of the forecast, understanding the nature
of the error is extremely important for the SO since the error is one of the major sources for
imbalances in an electricity system with high penetration of wind power. Studies (e.g. Doherty
and O’Malley (2005); Menemenlis et al. (2012)) have been carried out on how the wind power
prediction error a�ects the need for reserves and Menemenlis et al. (2012) show the importance
of the wind power prediction error classi�cation when determining the level of reserves.

It has o�en been assumed that the wind power prediction error can be described by a Gaus-
sian distribution (e.g. see Doherty and O’Malley (2005); Bou�ard and Galiana (2008)). However,
as Bludszuweit et al. (2008) and Hodge and Milligan (2011) point out, the error distribution
depends on the forecasting horizon and method. �e prediction error also depends on the
forecast being for a single wind turbine or for aggregated wind farms (Tewari et al. (2011)).
�e prediction errors from forecasts with a long forecast horizon and aggregated wind farms
may be described by the Gaussian or Normal distribution where the distribution of prediction
errors from forecasts with a shorter time horizon is heavy-tailed with variable kurtosis and
hence cannot be described by the Gaussian distribution (Bludszuweit et al. (2008); Hodge and
Milligan (2011)). To capture the heavy-tailed nature of the distribution of the short-term er-
ror, Bludszuweit et al. (2008) suggest the Beta distribution. Other distributions such as a Lévy
alpha-stable distribution (Bruninx and Delarue (2014)), the Cauchy distribution (Hodge and
Milligan (2011)), and the Gamma distribution (Menemenlis et al. (2012)) have also been sug-
gested. Lately, Wu et al. (2014) proposed a mixed distribution based on the Laplace and Normal
distribution to approximate the wind power prediction error. Lange (2005) takes another ap-
proach; assuming that the wind speed error to be Gaussian, they transform the wind speed
error into wind power errors by Taylor-expansions.

In all of the before mentioned studies; the description of the correlation of error in time is
absent. Pinson et al. (2009) address this problem by converting uniformly distributed series of
wind power prediction errors to a multivariate Gaussian random variable, where the interde-
pendence structure can be described by a unique covariance matrix. �is matrix is recursively
estimated in order to account for the variations in the characteristics of the errors. Ma et al.
(2013) expand the work done in Pinson et al. (2009) by including empirical distributions of the
prediction errors. In Litong-Palima et al. (2012), they account for the correlation of prediction
errors in time by generating day-ahead and hour-ahead wind power prediction errors on a
�ve minute resolution by an ARMA(1,1) process, where the independent random variable is
assumed to follow a Gaussian distribution. �e detailed resolution is obtained by using linear
interpolation between the hourly wind power prediction errors. Söder (2004) and Weber et al.
(2009), on the other hand, assume that the wind speed prediction error can be described with an
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ARMA(1,1) process, where the independent random variable is assumed to follow a Gaussian
distribution. �ey use a multidimensional ARMA(1,1) model to capture the positive correlation
of the wind speed prediction error between di�erent sites. In Matevosyan and Söder (2006),
they use the approach described in Söder (2004) to generate di�erent outcomes for the wind
speed error and convert it to scenarios for the wind power production. �e scenarios are used
in a stochastic model which generates optimal wind power production bids from the wind farm
owners to the power market.

In this paper, we use a di�erent approach. We generate the outcomes of the error term using
a copula-based heuristic from Kaut (2014). In particular, we use a nonparametric version of
the method that a�empts to replicate the distribution of the historical data, so we avoid extra
assumptions about the underlying distributions.

To summarise, our contribution to the existing literature is twofold:

• We develop a stochastic two-stage model for the intra-hour balancing problem. �e
model can be used for analysing electricity systems operations within the hour, such as
intra-hour variations, the e�ect of ramping pa�erns, or the minimum level of automatic
reserves. With minor modi�cations, the model can be used in operational planning.

• We show how to make scenarios for the short-term wind power production by generating
scenarios for the wind power prediction error by a copula-based heuristic.

�e rest of the paper is divided into sections as follows. In the following section, we de-
scribe the stochastic balancing problem and present our model. �en, we describe our scenario-
generation procedure in in Section 3. Finally, we apply our model to a Danish case in Section 4.

2. The stochastic balancing model

�e balancing problem described in this paper involves two sets of decisions. First, the manual
reserves are activated based on expected imbalances, and a�erwards, when the uncertain wind
power prediction errors are revealed, the automatic reserves are activated. �is can be seen as
a two-stage stochastic model, where the SO decides on the level of manual reserves that have
to be activated in the �rst stage, and in the second stage, the automatic reserves are activated
based on the actual imbalances caused by the wind power prediction errors.

In addition to the deterministic model presented in Andersen et al. (2014), we have in this
model included uncertainty in the wind power forecast and made a simpli�cation in the ac-
tivation of manual reserves. However, for the readability and completeness of the model, we
include all the notation and explanation of the �rst stage constraints, even though some of it
is as presented in Andersen et al. (2014).

2.1. Notation

We start out by discretising the time horizon, [0, T ], of the stochastic model into τ -minute
intervals ]τ(t− 1), τ t], t = 1, . . . , T/τ . Let T = {0, . . . , T/τ}. �e time periods are further
grouped into Λ groups, such that each group λ, where 1 ≤ λ ≤ Λ, has |Tλ| time periods. Since
we describe a two-stage model, we let Λ = 2, a group for each stage. T then consists of the
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two subsets T1 and T2, where T1 = {0} and T2 = {1, . . . , T/τ}. �e �rst stage is assumed to
be deterministic, so we have one stochastic stage T2 with T/τ stochastic periods.

�e transmission grid is modelled as a network (N ,A) with nodes N = {1, . . . , N} and
arcs A = {a : a = (n, n′), n, n′ ∈ N : n < n′} representing transmission lines. We denote
by δout(n) = {a : a = (n, n′), n′ ∈ N} and δin(n) = {a = (n′, n), n′ ∈ N} the sets of arcs
either originating from or terminating in node n, respectively. For a ∈ A, we let the capacity
of transmission line a be Lmax

a . Moreover, we let the �ow allocated day-ahead to line a in time
interval t be Lat. If a = (n, n′) and Lat > 0 there is a net import from n to n′. If Lat < 0 there
is a net export. We represent the intra-hour scheduled import determined by our model on the
transmission line in the same time interval by the variable ∆lat using the same conventions
regarding its sign. �e allowed change in the �ow on a transmission line between two time
periods will be denoted by Ra.

�e set of all conventional units is denoted by I , the set of units online in time interval
t is denoted It, and the units located in node n by In. For i ∈ I , we denote the planned
production day-ahead in time interval t by the parameter Pit, and the plant’s minimum and
maximum production limits byPmin

i andPmax
i , respectively. �e model will minimise expected

imbalances by doing short-term production planning, and it decides, based on updated weather
forecasts, to producePit+∆p+

it−∆p−it , instead ofPit. �e �rst-stage decision variables ∆p+
it ≥

0 and ∆p−it ≥ 0 represent the balancing power provided by intra-hour activation of manual
reserves on the unit in the time interval. When doing short-term production planning, we must
for each unit i and time interval t obey

Pmin
i ≤ Pit + ∆p+

it −∆p−it ≤ P
max
i .

However, in real time, there will still be imbalances that have to be dealt with using the
automatic reserves. �e extra produced or reduced power is illustrated by the second stage
variables q+

nts ≥ 0 and q−nts ≥ 0, which represent the generation surplus or shortage in node n
in scenario s ∈ S during time interval t. Note, that we do not have any limits on the production
from automatic reserves. Firstly, there exist plants whose only purpose is to supply automatic
reserves and hence are not included in the set I . Secondly, by not restricting the second stage
variables, we are guaranteed to always have a feasible solution to the problem. Hence, the
model can indicate which level of automatic reserves that are needed in order to maintain a
secure system.

We denote by Ci the variable generation cost of unit i ∈ I . �e late scheduling of the units
close to real time operation incurs extra variable cost γCi. Note, whereas activation of power
generates a cost, deactivation of power results in cost savings from not producing. We therefore
let C+

i := (1 + γ)ci and C−i := (1 − γ)ci, with γ ∈ [0, 1], be the costs of activated manual
reserve power and savings from deactivated manual reserve power, respectively. �e idea is to
allow the costs and savings to re�ect the additional stress imposed on the unit when using it
for balancing purposes. Since Pit is already decided, we do not include its costs in the model.
�e costs of activating automatic reserves in node n are denoted by C+

n and C−n , where most
likely C+

n > maxiC
+
i and C−n < miniC

−
i . In other words, it is likely that there is a higher

cost for extra production and lower savings for production decrease in the case of automatic
reserves compared to the manual reserves.
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Figure 1: Scenario tree.

In order to keep track of the activated manual reserves, we let the variables g+
it and g−it be the

amount of recently activated and deactivated power on unit i in time interval t, respectively.
If new manual reserves are activated on a unit, it has to provide the commi�ed level for at
least τ res time periods. If we activate or deactivate manual reserve power, we let the associated
binary variables v+

it or v−it be one and zero otherwise. �e amount of recently activated or
deactivated manual reserve power has to be above the threshold value Gmin

i . Furthermore,
we introduce the variables gramp,+

it and gramp,−
it to record the ramping power generated by a

unit providing manual reserves, where gramp,+
it is related to activating power and gramp,−

it to
deactivating power. How much the production level is allowed to change from one time period
to another will be denoted by R+

i when the unit is ramping up, and by R−i when the unit is
ramping down. A unit is only allowed to ramp τmax time periods before a new activation level,
and τmax time periods a�er the activation period of τ res time periods.

We assume that the demand is in�exible, meaning that the level of demand in each time
period is maintained at the forecasted level. We denote by the parameter Dnt its value in node
n in time interval t.

�e uncertainty is modelled using scenarios s ∈ S = {1, . . . , S} with probability Πs and∑
s∈S Πs = 1. �e only stochastic parameter in the model is the wind power production ωsnt

for t ∈ T2, with the �rst-stage deterministic values denoted by ωnt, for t ∈ T1. �is results in
the scenario tree presented in Fig. 1, where we have omi�ed the node subscripts, i.e. all the
values are vectors of size N .

2.2. Objective function

We schedule the activation of manual reserves ∆p+
it and ∆p−it , such as to cover any expected

imbalances between supply and consumption. Occasionally, this may be technically infeasible,
or it may be feasible only at very high costs, in which case imbalances are le� to automatic
reserves q+

nts and q−nts. Since the uncertainty in wind power is revealed a�er activation of
manual reserves, the amount of automatic reserves depends on the realisation of the wind
power prediction error, and hence, we have an outcome with a probability Πs for each scenario.
�e optimal schedule is determined by a trade-o� between the activation cost of manual and
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automatic reserves. �e objective is∑
t∈T2

(∑
i∈It

(C+
i ∆p+

it − C
−
i ∆p−it) +

∑
s∈S

Πs
( ∑
n∈N

(C+
n q

+
nts − C−n q

−
nts)
))
,

which is minimised subject to a number of constraints presented next.

2.3. Balancing constraint

�e balancing constraint ensures system balance between supply and consumption. According
to this constraint, if at any point in time scheduled production exceeds predicted consumption
Dnt or vice versa, we experience generation surplus or shortage, which will be le� to the au-
tomatic reserves q+

nts and −q−nts. We assume that it is always possible to provide the su�cient
amount of automatic reserves. Production includes day-ahead planned generation on conven-
tional unitsPit, intra-hour activation of manual reserves ∆p+

it and ∆p−it , forecasted wind power
production ωsnt, and �nally day-ahead and intra-hour net import/export on the transmission
lines Lat + ∆lat. �us, we have that∑

i∈It∩In

(Pit + ∆p+
it −∆p−it) +

∑
a∈δin(n)

(Lat + ∆lat)

−
∑

a∈δout(n)

(Lat + ∆lat) + q+
nts − q

−
nts = Dnt − ωsnt, n ∈ N , t ∈ T2, s ∈ S. (1)

2.4. Limits on re-dispatch variables

Transmission �ow is restricted by the available line capacity. In particular, intra-hour import
∆lat on the transmission lines is bounded above by the line capacity Lmax

a minus the capacity
allocated day-ahead Lat. �us, we have that

−(Lmax
a − Lat) ≤ ∆lat ≤ Lmax

a − Lat, a ∈ A, t ∈ T2.

Activation of manual reserve power is bounded above by the maximum capacity Pmax
i that

has not already been dispatched day-ahead Pit, whereas deactivation is bounded by the dis-
patched capacity in excess of the minimum capacity Pmin

i . Formally,

∆p+
it ≤ P

max
i − Pit, i ∈ It, t ∈ T2,

∆p−it ≤ Pit − P
min
i , i ∈ It, t ∈ T2.

2.5. New generation level of a unit

We require the minimum threshold value Gmin
i to be obtained when activating manual re-

serves. �e threshold value is included in order to make it pro�table for the unit to change the
production level. Manual reserves are activated when v+

it (v−it ) is equal to one at the level g+
it

(g−it ).

Gmin
i v+

it ≤ g
+
it ≤Mv+

it , i ∈ It, t ∈ T2, (2)
Gmin
i v−it ≤ g

−
it ≤Mv−it , i ∈ It, t ∈ T2, (3)
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where M is a su�ciently large number, e.g. Pmax
i .

It is only allowed to either activate or deactivate manual reserve power on the same unit in
one time interval, hence,

v+
it + v−it ≤ 1, i ∈ It, t ∈ T2. (4)

Additional levels of reserves may be activated on the same unit at a given point in time. �is
we refer to as activating new reserves. �e amount of manual reserves a unit provides at a
given point in time can be calculated by

∆p+
it =

t∑
t′=max{1,t−τ res+1}

g+
it′ + g

ramp,+
it , i ∈ It, t ∈ T2, (5)

∆p−it =

t∑
t′=max{1,t−τ res+1}

g−it′ + g
ramp,−
it , i ∈ It, t ∈ T2, (6)

where τ res is the �xed time from time t and forward, for which the activated reserves have
to provide the level g+

it′ (g−it′ ) of power. �e actual manual reserves provided by a unit are
the activation level plus the ramping power gramp,+

it (gramp,−
it ) it provides in order to reach the

agreed level.

2.6. Ramping

Ramping constraints on the transmission lines are restrictions on the change in allocated trans-
mission �ow from one time interval to another and apply to net import. In order to record the
change from one time interval to another, we need to include both the day-ahead agreed �ow
amount Lat and the variation decided by our model ∆lat from the time intervals. �us,

−Ra − La(t+1) + Lat ≤ ∆la(t+1) −∆lat ≤ Ra − La(t+1) + Lat,

a ∈ A, t ∈ T2 : t ≤ |T2| − 1.

It is allowed to change the �ow on the transmission line by Ra between two time intervals.
For the generating units, we include detailed ramping restrictions where the change in day-

ahead planned production Pit is taken into account.

−(R−i + Pi(t+1) − Pit) ≤ ∆p+
i(t+1) −∆p+

it ≤ (R+
i − Pi(t+1) + Pit), (7)

i ∈ It, t ∈ T2 : t ≤ |T2| − 1,

−(R+
i − Pi(t+1) + Pit) ≤ ∆p−i(t+1) −∆p−it ≤ (R−i + Pi(t+1) − Pit), (8)

i ∈ It, t ∈ T2 : t ≤ |T2| − 1.

�e allowed ramping speed between two time intervals is R+ for activation of power, where
it is R− for deactivation.
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Generating units can only ramp towards a new level in τmax time periods before the amount
of activated reserves has to be fully activated and in the τmax time periods a�er the activation
period of τ res time periods.

g
ramp,+
it ≤M

min{T,t+τmax}∑
min{T,t+1}

v+
it′ +M

max{1,t−τ res}∑
max{1,t−τmax−τ res+1}

v+
it′ , i ∈ It, t ∈ T2, (9)

g
ramp,−
it ≤M

min{T,t+τmax}∑
min{T,t+1}

v−it′ +M

max{1,t−τ res}∑
max{1,t−τmax−τ res+1}

v−it′ , i ∈ It, t ∈ T2, (10)

where M is a su�ciently large number, e.g. Pmax
i . If v+

it′ (v−it′ ) is equal to 1 in the constraint, it
indicates that an activation (deactivation) of manual reserve power has occurred at time t′, and
thereby it is possible for the unit to ramp by activating (deactivating) gramp,+

it (gramp,−
it ) power

in the τmax time periods before time t′ and a�er time t′ + τ res.
If new reserves are activated, and thereby a new level of production is commi�ed on a unit

in one time period, ramping is not allowed in the same period on the same unit. Hence,

g
ramp,+
it ≤M(1− v+

it ), i ∈ It, t ∈ T2, (11)
g

ramp,−
it ≤M(1− v−it′), i ∈ It, t ∈ T2, (12)

where M is a su�ciently large number, e.g. Pmax
i .

Since ramping in optimisation can adapt to the imbalances, we restrict the ramping to a
linear pa�ern.

g
ramp,+
it =

∆p+
i(t−1) + ∆p+

i(t+1)

2
, i ∈ It, t ∈ T2 : 1 < t ≤ |T2| − 1, (13)

g
ramp,−
it =

∆p−i(t−1) + ∆p−i(t+1)

2
, i ∈ It, t ∈ T2 : 1 < t ≤ |T2| − 1. (14)

Hence, the level of manual reserves ∆p+
it and ∆p−it in time period t depends on the previous

and the subsequent levels.

3. Generating scenarios for the wind power production

In this section, we describe the process of generating values for the stochastic wind power
production ωsnt for n ∈ N , s ∈ S , and t ∈ T2. For this, we assume that we have, at time t = 0,
access to wind power forecast ω̂nt for all t ∈ T2; this forecast is typically obtained from a third
party. �e scenario values for wind power production, ωsnt, are then computed as

ωsnt = ω̂nt + εsnt, (15)

where εsnt is the prediction error in period t and scenario s. �is implies that we �rst create
the scenario tree for the prediction errors and then combine these with the forecast to get the
wind production values; this is illustrated graphically in Fig. 2 on the next page.
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Figure 2: Construction of scenarios. �e graph in the top shows an example of a wind power production
forecast. �e graph in the middle shows an example of scenarios for the prediction error. �e
graph in the bo�om is a combination of the two other graphs and is our scenario tree for the
wind power production.
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�e prediction error is a result of the imprecision of the wind power production forecast.
Its statistical properties depend on the length of the forecast and need to be estimated from
historical data. For this purpose, we assume that we have access to historical data for both
the production and the forecasts for all the forecast lengths ∆t used in the model: ∆t = τ t
with t ∈ T2 = {1, . . . , T/τ}. We use a tilde to distinguish the historical data from the model
parameters, so ω̃n,t denotes the historical wind production at some time t < 0, ω̃n,t+∆t|t stands
for the forecast for time t+ ∆t made at time t, and ε̃n,t+∆t|t is the error of this forecast, i.e.

ε̃n,t+∆t|t = ω̃n,t+∆t|t − ω̃n,t+∆t .

Once we have computed the historical errors ε̃n,t+∆t|t, we can treat them as data series for
each n and ∆t. Hence, we have a historical data set with dimension |N | × |T2| for which
we want to generate scenarios. Before we delve into the details about how we generate these
scenarios, we need to explain how we use the generated values. Since each ∆t is a separate
data series, we only need to generate values one period ahead. To explain why, let us denote the
generated values by ε̄sn,∆t. In the model, on the other hand, we need εsnt = ε̄sn,τ t, used in (15)
to compute the wind production values ω̂nt. �is way, we transform scenarios for |N | × |T2|
variables one period ahead into scenarios for |N | variables |T2| periods ahead. �is implies,
that if ε̄sn,τ t correctly captures the |N | × |T2|-dimensional distribution, then εsnt will correctly
describe not only the dependencies between nodes within each period, but also inter-temporal
dependencies such as autocorrelations.

To achieve this, we generate the scenarios using an algorithm from Kaut (2014). �is method
generates scenarios that try to replicate a speci�ed multivariate distribution; in our case pro-
vided by the historical data for forecast errors ε̃n,t+∆t|t. It does so by matching all the univari-
ate distribution functions plus the bivariate copulas of all the variable pairs. For the purpose
of this paper, a copula can be thought of as a generalisation of the linear correlation, which
can fully describe the dependence between stochastic variables – unlike correlations that only
capture linear dependencies. See Nelsen (1998) for more information about copulas, and Kaut
and Wallace (2011) for a discussion about their use in scenario generation.

With |N |×|T2| variables, matching copulas for all the |N |×|T2|
(
|N |×|T2|−1

)
/ 2 variable

pairs becomes impractical. By trying to match copulas for so many pairs, the approximation
error can be expected to be signi�cant, especially since we can only solve the model with
a couple of hundreds scenarios for realistic instances. For this reason, we concentrate only
on the most important pairs of variables: for each forecast length ∆t, we match the copulas
between all the locations/nodesn, and for each noden, we match the copulas between forecasts
of similar length, speci�cally for 0 < ∆t2 − ∆t1 ≤ U τ . �ere, U ≥ 1 is a case-dependent
constant, whose value has to be adjusted to the data and also the generated number of scenarios.
�is reduces the number of bivariate copulas to

|T2| ×
|N | × (|N | − 1)

2
+ |N | ×

U∑
l=1

(|T2| − l) , (16)

a reduction by the factor of more than T/(1 + 2U/N). Naturally, there is a price to pay for
this reduction: when we do not specify the dependence between a given pair of variables, it
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does not mean that the two variables become independent. It simply means that the algo-
rithm does not have any control over the dependence, except for the constraints implied by the
other pairs. For this reason, we need to check the quality of the scenario-generation procedure
and its suitability for our optimisation model prior to using it on real data. In our case, these
checks indicate that the scenarios-generation procedure performs satisfactorily, as shown in
Section 4.2.1.

4. Real-world problem

To investigate the usefulness of the model, we apply it on realistic data from Denmark. We look
at two areas, Denmark West and Denmark East, and optimise the use of reserves during four
weeks in 2012: a week in January, a week in April, a week in July, and �nally, a week in October.
We apply the model in a rolling horizon manner where we solve the model with a two hour
time horizon every hour. �e two hour time horizon is chosen to avoid undesired end e�ects.
We will use the result for the �rst hour and disregard the result from the second hour, since
the second hour will be re-optimised in the subsequent run of the model. �e initialisation of
each run is based on the state of the last optimised hour that is not disregarded. By utilising
rolling horizon, we can take updated information about the system into consideration, and in
our case, we get updated wind power production forecasts every hour. Our test instances each
cover a week, and thereby they each consist of 168 hours. However, we will only report of
167 hours, since we use the �rst hour of each case for initialisation. �e time resolution of the
model, meaning each time interval ]τ(t− 1), τ t], t ∈ T2, will represent �ve minutes.

In each of the four cases, we will compare the cost of balancing the system when having sce-
narios for the wind power prediction error to the cost of balancing the system when assuming
the prediction error to be zero, i.e. to the deterministic case. We investigate how the solution
di�ers in the two cases. Furthermore, in order to show that it makes sense to predict the im-
balances in the system and be proactive, we calculate the cost of balancing the system in each
of the four weeks by only using automatic reserves. Finally, we investigate what the cost in
the four weeks would have been if we were able to predict the actual wind power production,
i.e. in the case of perfect foresight. �e solution of perfect foresight is a lower bound on the
actual cost of balancing the system, which the stochastic solution will never be able to match,
but it indicates how far we are from the perfect solution.

We run the model on a computer with an Intel Core 2.30GHz processor and 4 GB RAM. �e
model is implemented in the 64 bit GAMS framework version 24.2.3 for Windows using the
CPLEX 12.6 solver.

4.1. Data

We get unit commitment data from the unit commitment model, Sivael, used by the Danish
transmission system operator, Energinet.dk. Real data for the Danish system in 2012 are given
as input to the unit commitment model. A�erwards, we use an intra-hour model, SimBa from
Energinet.dk, to convert the hourly output from the unit commitment model into a time reso-
lution of �ve minutes. A description of SimBa can be found in Hansen et al. (2011).
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Table 1: Aggregated information about the system for four di�erent weeks in year 2012 used as input
to our model. �e numbers represent the mean (standard deviation) of the 2016 time periods
in the optimisation period, and hence is calculated in MWh/12. Note, capacity is showed in
MW and day-ahead forecasts in MWh.

All areas – 2012 cases
January April July October

Demand (MWh/12) 4520(863) 3940(644) 3537 (625) 3976(731)
Conv. prod. (MWh/12) 3363(527) 2571(890) 940 (524) 2342(763)
Online capacity (MW) 5634(249) 5299(337) 3188(1289) 5205(331)
Wind power prod. forecast DA (MWh) 2054(836) 1005(668) 949 (488) 894(791)
Wind power prod. forecast HA (MWh/12) 1958(812) 999(662) 927 (529) 927(785)
Wind power prod. (MWh/12) 1914(811) 996(660) 921 (526) 934(786)
Installed wind capacity (MW) 3926 3969 4025 4038
Import (MWh/12) 931(637) 1811(637) 2322 (443) 1750(801)
Export (MWh/12) 1698(584) 1478(512) 608 (250) 943(748)

Aggregated overall information about demand, conventional production, conventional ca-
pacity, wind power production forecasts, actual wind power production, installed capacity,
import, and export can be found in Table 1. Online capacity is conventional capacity disposal
for the market, meaning started up capacity where some of it is already commi�ed by the unit
commitment model, the rest of the capacity can be used as reserves for additional electricity
production in our model. Wind power prod. forecast DA is the forecast made to clear the day-
ahead market used in the unit commitment model, where the wind power prod. forecast HA
is the updated wind power production forecast used in our model. �e updated wind power
forecasts used are made just before the hour of operation.

In order to resemble real life balancing in the Nordic countries, we follow present market
rules and let the ramping period, τmax, for import, export, and conventional production units
be 15 minutes. Having a time resolution of �ve minutes implies τmax = 3. Once a generating
conventional unit has been re-dispatched, the unit commits to the change in 30 minutes, i.e
τ res = 6. Finally, the unit is guaranteed to have a re-dispatch amount greater than 10 MWh/12,
i.e. Gmin

i = 10 for all i ∈ I .
�e costs of manual reserves are the individual marginal costs of the generating units altered

with the parameter γ. �e level of marginal costs of the generating units are within the range
e2.27-205.73, where γ is set to 0.1 to represent the additional stress imposed on the unit. Recall,
that for up-regulating cost the marginal cost of a unit is multiplied by 1 + γ, where for down-
regulating cost the marginal cost of a unit is multiplied by 1− γ.

In practice, the costs for automatic reserves are not known when optimising and activating
manual reserves for the next hour. To run our model, we need to estimate a �xed number
for the cost of the automatic reserves, and hence we base the level on historical data from
2012. We let the 95% fractile for the historical cost of manually activating additional electricity
in the balancing market be the cost for the automatic reserves when additional electricity is
activated. Likewise, we let the 5% fractile for the historical cost in the balancing market of
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manually deactivating power be the cost for the automatic reserves in the case of deactivation
of power. Hence, in our cases, we will assume the cost of activating automatic reserve power
to be e75 and the cost of deactivating automatic reserve power to be e10.

4.2. Scenarios for the wind power production

�e wind power production scenarios are generated as described in Section 3. Data input to
the procedure comes from historical data for the wind power production in Denmark during
2012. �e data consists of information about the installed capacity, the actual wind power pro-
duction, the forecasts made day-ahead and the updated forecasts made just before the hour of
operation where the system had to be balanced. Subsequently, we have calculated the historical
prediction errors normalised with installed capacity, which is the actual input to the scenario
generation procedure. �e time resolution of all these time series is �ve minutes.

Our data analysis of the historical wind data shows a signi�cant di�erence in the prediction
errors between onshore and o�shore wind power production, as documented in Fig. 7 and Fig. 8
in Appendix A on page 25. For this reason, we separate the onshore and o�shore wind power
production in both the studied regions, so we end up with four locations (N = 4). Since we
solve the model for two hours ahead with �ve minute steps, we have T = 120, τ = 5, and
|T2| = T/τ = 24. As a result, the model has N × |T2| = 96 random variables.

It follows that there are 4560 bivariate copulas to match – too many to get a good match,
especially since we can solve the model with a couple of hundreds of scenarios at most. We
therefore only match a subset of the copulas as discussed in Section 3. A�er studying the
data, we have decided to use U = 2, i.e. to model dependencies between forecast errors with
forecasts lengths that di�er by two periods at most. Using (16), we see that this reduces the
number of copulas to 324; a far more manageable amount.

In order to construct the scenarios, we need exogenous given wind power forecasts, see Fig. 2
on page 10. For this, we use the historical updated wind power forecasts from 2012.

Fig. 3 on the next page shows two graphs. �e graph on the le� shows 50 scenarios generated
by the described scenario generation method. As expected for a short-time forecast, most of
the scenarios lie around the forecast (the gray line) with some extreme scenarios farther apart.
In most cases, also the actual wind production lies within the range of the scenarios. In rare
occasions, however, the forecast is wrong from the start, so the actual wind production will
be outside of the range covered by the scenarios, especially at the start of the horizon. �is is
illustrated by the graph to the right.

�e graph in Fig. 4 on the following page shows 50 scenarios for a whole week. Since the
model is re-optimised every hour when new scenarios are generated, the scenarios will be close
to the new updated forecast every hour, wherea�er they will spread out and gather again in
the beginning of the next hour.

4.2.1. In-sample and out-of-sample stability tests

Stability and high accuracy of the scenario generation procedure are important to ensure con-
sistency and high quality of the solutions coming from the intra-hour model. In-sample and
out-of-sample stability tests, as described in Kaut and Wallace (2007), can be used to measure
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Figure 3: �e graph to the le� shows 50 generated scenarios for onshore Denmark West from the sce-
nario generation procedure for four hours where the graph to the right shows 50 generated
scenarios for two hours during another time period. �e gray line shows the wind production
forecast, and the thick black line shows the actual wind power production.
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Figure 4: �e graph shows 50 generated scenarios for onshore Denmark West for a whole week.
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the quality of the scenario generation procedure in relation to the model. According to King
et al. (2012), there are at least two ways to perform these tests. Which tests to use depends on
the scenario generation procedure itself which will be explained below.

For in-sample stability, it is important to ensure that the objective function value of the
model is approximately the same each time it is run on the same data. �ere are at least to ways
to perform tests for in-sample stability. First, if the scenario generation procedure generates
di�erent scenario trees, it is important to test if di�erent trees of the same size generate the
same objective function value. Second, if the scenario generation procedure generates the same
tree each time, then trees of di�erent sizes have to be investigated. In order to have in-sample
stability in the la�er of the two cases, the objective function value should not change when
changing the tree size with a small amount.

For out-of-sample stability, the value of implementing the �rst-stage variables and optimise
the second-stage variables with respect to the true distribution of the random variables should
not change between di�erent runs. Again, when investigating the stability, the stochasticity of
the scenario generation procedure has to be taken into account as described under in-sample
stability.

Another important factor to investigate is the bias of the model. If the objective function
value of the model when it is optimised over the entire distribution of the random variables
is di�erent from the objective function values given by the model when optimised over the
scenario trees, then the scenarios do not represent the underlying distribution well enough.

�e copula-based method we use for generating the scenarios for the error terms is some-
where between the two cases described above: since it is probabilistic repeated runs with the
same input parameters, it typically results in very few distinct trees. For this reason, we com-
bine the two approaches to stability and run the intra-hour model 10 times for the following
number of scenarios: 1, 5, 10, 20, 30, 50, 75, 100, 125, 150, 175, and 200. However, if stability is
achieved before we have investigated all the tree sizes, we stop. �e case with 1 scenario is the
deterministic variant of the model.

For the stability tests, we report the following values: (V1) is the in-sample objective value,
i.e. the objective value of the scenario-based model. �e out-of-sample value (V2) is computed
by �xing the �rst-stage decisions and re-optimising using all the historical data as our scenar-
ios. In order to measure the bias, we also calculate the value (V3) for the objective value of
the model optimised over all the historical data. Note, that we are able to calculate (V3) only
because we investigate these two small cases. It will be too time consuming to apply the model
on the full cases with all the historical data for the prediction errors. In the stability tests, we
should optimally see both (V1) and (V2) stabilising and approaching (V3) with the increasing
number of scenarios.

We run the model with a two hour time horizon. Due to the complexity of the model, we
have chosen two hours in January and two hours in July as representative cases for the full
instances. �e January two-hour case is di�cult for the model to solve, while the July two-
hour case is solved easily. Since the model is normally run with rolling horizon where the last
hour of a model run is re-optimised in the subsequent run of the model, the output function of
the model is only implemented for the �rst hour. Hence, we report the costs in these test only
for the �rst hour.

Fig. 5 on the next page shows the results of the tests. �e �gure shows that, for a given size
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Figure 5: In this �gure, we see two graphs showing the objective function value for our in- and out-of-
sample stability tests for the two studies months. • represents values from (V1), ◦ represents
values from (V2), and the black line represents values from (V3).

of the scenario tree, the scenario generation procedure is indeed stable: for most of the tree
sizes, we only see one dot in the �gure for each of the measurements (V1) and (V2). However,
running the model with di�erent tree sizes shows some instability. Looking at the graph to
the le� in Fig. 5, we can see that the values improve fast when including up until 50 scenarios.
A�er 50 scenarios, the values are approaching each other very slowly and the values of the
three di�erent measurements lie relatively close. However, with 200 scenarios, the values of
the three measurements are still not exactly the same. Looking at the graph on the right, we
see that the three measurements give approximately the same value already when including
30 scenarios.

We choose to run our full test instances with 50 scenarios. �e tests show that the objective
function value is reasonably stable around 50 scenarios, while the solution time is still man-
ageable: it would be too time consuming to run the full tests with the 200 scenarios that are
required for signi�cantly be�er stability.

4.3. Results

In this section, we will present the obtained results. We will present results from four di�erent
versions of the model presented in Section 2. �e �rst version is the stochastic model, where
we apply the scenario generation procedure described in Section 3 to make 50 scenarios for
the wind power production for each of the individual hours in the test instances. �e second
version is the deterministic model, where we only have one scenario for the wind power pro-
duction and that is the expected value, i.e. where the expectation of the error-term is zero. �e
third version is the case of perfect foresight, where we also only have one scenario for the wind
power production, but this scenario is the actual realised wind power production. �e fourth
and �nal version is also the stochastic model, but with an extra constraint forcing the manual
reserves to zero, such that only automatic reserves are utilised.

17



Table 2: Average objective function values and actual values in e and CPU time of the cases. �e total
CPU time is displayed hours �rst and then additional minutes (h:m).

Objective value Actual cost CPU time
Case Model Average Std. Average Std. < 1 min. > 10 min. Total

January Stochastic 2751 16 862 4765 17 526 76.0% 4.2% 3:48
Deterministic 1465 16 892 5269 17 364 73.1% 9.6% 6:34
Perfect foresight 2123 17 225 2123 17 225 68.8% 9.0% 6:51

April Stochastic 6844 14 069 7338 13 755 86.2% 2.4% 2:25
Deterministic 5598 14 144 7639 13 644 85.6% 6.6% 4:13
Perfect foresight 5643 13 774 5643 13 774 87.4% 4.2% 3:23

July Stochastic −82 7274 405 7543 99.4% 0.0% 0:33
Deterministic −1392 7052 727 7577 97.0% 0.0% 0:38
Perfect foresight −1383 7087 −1383 7087 97.6% 0.0% 0:38

October Stochastic −3442 8102 −3276 8179 92.2% 0.6% 1:27
Deterministic −4883 8089 −2893 8233 86.8% 3.6% 3:04
Perfect foresight −5072 8151 −5072 8151 86.8% 0.6% 2:12

Table 2 displays the average objective function value (which we will call average expected
cost) and its standard deviation over the individual hours in the investigated weeks for each
of three models: the stochastic, the deterministic, and the case of perfect foresight. �e high
standard deviation indicates signi�cant variability in the costs between individual hours. �is
is further supported by Fig. 6 on the next page, which shows the expected hourly cost for the
deterministic January case together with the expected imbalance.

Comparing the objective function values of the stochastic and deterministic models, we can
see that the the stochastic solutions have higher expected costs; this is to be expected, since the
stochastic model needs to hedge against uncertainty. Table 2 also displays the actual (real) cost
of implementing the solution value of the �rst-stage decision variables. Here, the di�erence is
reversed: the deterministic solutions cannot cope with the uncertainty and end up being more
expensive than the stochastic ones on average. We can thus conclude that for the investigated
problem, it is bene�cial (on average) to use a stochastic model instead of a deterministic model.

Looking at the running times of the model (also displayed in Table 2), we see that for most
of the hours, the model is quite fast: between 68.8% and 99.4% of the individual hours in each
ccase are solved within a minute. However, a few of the instances take considerably more
time: between 0% and 9.6% of the instances take more than ten minutes (and o�en even much
more) to solve. For the numbers displayed in Table 2 the optimisation of an individual hour
was stopped a�er 1000 sec., which happened in 1.8% of the cases. For those hours not solved
to optimality, the gap was 0.6% at most.

Analysing the di�cult instances, we note that these represent hours with large changes in
the supply of power over a very short time, or hours, where the overall production level is close
to the overall minimum or maximum capacity level. Looking at the overall running time for
each of the di�erent cases for the four weeks, we see that the stochastic model is solved faster
than the deterministic model which is not what we expected to see. We also see that there
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are more of the individual hours that require a long running time in order to �nd the optimal
solution in the deterministic model compared to the stochastic model. In order to explain
this, we will �rst point out that the second-stages of the stochastic model are solved very fast.
Second, in Table 3, we see that the stochastic solution on average activates more additional
power and deactivate less than the deterministic solution. In all four cases, the gap between
the aggregated planned production level and the overall minimum capacity level is smaller
than the gap between the maximum production level and the aggregated planned production
level. �is means that on the short-term horizon, we can activate more power than we can
deactivate. Since cases where the production level is close to the capacity limits are di�cult to
solve, an explanation for the longer running time of the deterministic cases could be that the
production level comes close to the minimum capacity level.

Table 3: �e average di�erence in manually activated or deactivated power between the stochastic and
the deterministic solution (stochastic - deterministic). �e numbers are displayed in MWh/12.

Case Average up Average down

January 5.64 -20.37
April 11.99 -12.32
July 11.09 -9.08
October 29.61 -21.21

Table 4 on the following page shows the aggregated total cost for the whole week given by
the stochastic solution, the deterministic solution, and in case of perfect foresight for each of
the four test instances. �e results in Table 4 support the results in Table 2 and show that in all
cases, the total cost given by the objective function of the stochastic solution is higher than the
total cost given by the objective function of the deterministic solution. However, implementing
the deterministic solution compared to implementing the stochastic solution entails a higher
total actual cost in all of the four weeks. Looking at Table 5 on the next page, we see that
the actual cost of the stochastic solution is actually smaller than the actual cost given by the
deterministic solution in 62% - 77% of the individual hours in the four weeks.

As pointed out earlier, in the stochastic solution we manually activate more additional power
and deactivate less than in the deterministic solution. It can be seen in Table 4 that the stochas-
tic solution also deactivates more automatic reserve power than in the deterministic case, and
it activates less automatic reserve power. Since it is cheaper to activate manual reserve power
than automatic reserve power, the stochastic solution builds in a bu�er by assuring a higher
level of produced power before the hour of operation. If there is no need for the additional
power, it will be deactivated by the automatic reserves.

Now, one could think that incorporating this bu�er could be rather expensive and that it
could be bene�cial not to be proactive and just leave all the imbalances to the automatic re-
serves. However, when looking at Table 6 on page 22, we see that the actual cost of such an
approach is very expensive. Hence, it is be�er to be proactive even though it can occasionally
result in activation of manual reserves which is deactivated by automatic reserves when the
uncertainty is revealed.

If there had been no uncertainty in the wind power production, we would have had the
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cost given by the solution of perfect foresight. If we could predict the wind power production
precisely, it would result in huge savings. For July, it is more than four times the cost of the
stochastic solution, and else it is between 23% and 55%.

Table 4: Weekly costs of operating the system. All numbers listed are in e.

Case Strategy Man. act. Man. deact. Auto. act. Auto. deact. Total

January Stochastic Expected 1 232 805 −1 372 805 709 147 −109 734 459 413
Actual 1 042 456 −106 663 795 793

Deterministic Expected 1 222 213 −1 460 396 518 206 −35 329 244 694
Actual 1 202 638 −84 587 879 868

Perfect foresight 1 269 633 −1 392 438 510 245 −32 868 354 572

April Stochastic Expected 2 431 796 −2 180 726 1 013 361 −121 524 1 142 907
Actual 1 107 806 −133 420 1 225 456

Deterministic Expected 2 425 102 −2 236 951 796 819 −50 079 934 891
Actual 1 191 575 −104 000 1 275 726

Perfect foresight 2 397 138 −2 228 160 823 970 −50 538 942 410

July Stochastic Expected 627 105 −671 029 199 857 −169 679 −13 746
Actual 286 194 −174 569 67 701

Deterministic Expected 590 006 −716 442 4328 −110 351 −232 459
Actual 404 581 −156 676 121 469

Perfect foresight 576 937 −707 088 2329 −103 125 −230 947

October Stochastic Expected 758 591 −1 419 053 226 467 −140 882 −574 877
Actual 271 469 −158 158 −547 151

Deterministic Expected 693 241 −1 504 818 23 525 −27 475 −815 527
Actual 421 750 −93 332 −483 159

Perfect foresight 669 776 −1 509 467 21 028 −28 356 −847 019

Table 5: Comparison of the solutions given by the stochastic model and the deterministic model. For
each of the two models, it is shown in how many of the individual hours the model found a
solution with lowest actual cost.

Case Deterministic best Stochastic best

January 23% 77%
April 37% 63%
July 34% 66%
October 38% 62%

5. Conclusion

In this paper, we have presented a stochastic model for the short-term balancing problem be-
tween demand and consumption of electricity. We have made scenarios for the wind power
prediction error by a copula-based heuristic that captures the dependency between all the wind
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Table 6: Weekly actual costs of operating the system with only automatic reserves. All numbers listed
are in e.

Case Total cost

January 2 368 144
April 3 838 005
July 809 076
October 462 443

variables but also the dependency of the errors of the individual wind variables through time.
�e results show that the stochastic model is superior to the deterministic model when look-

ing at the actual cost of the solutions. �e stochastic model builds in a bu�er of additional
electricity by activating more manual reserve power than the deterministic model. It does so
since it is cheaper to activate the manual reserves than the automatic reserves, and if there is
no need for the additional power, it is deactivated by the automatic reserves.

�e results also show that it is a good idea to be proactive and activate manual reserves
before the actual imbalances occur. It will be much more expensive to only let the automatic
reserves handle the imbalances.
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A. Graphs for historical wind data
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Figure 7: �e average of the normalised wind power prediction errors in Denmark recorded in 2012 for
each of the four months we investigate. �e thin line represents values for January, the thick
line represents values for April, the sca�ered line represents values for July, and the do�ed
line represents values for October.
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Figure 8: Standard deviation of the normalised wind power prediction errors in Denmark recorded in
2012 for each of the four months we investigate. �e thin line represents values for January,
the thick line represents values for April, the sca�ered line represents values for July, and the
do�ed line represents values for October.
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